首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.  相似文献   

2.
3.
Convergent evolution of enzyme active sites is not a rare phenomenon   总被引:1,自引:0,他引:1  
Since convergent evolution of enzyme active sites was first identified in serine proteases, other individual instances of this phenomenon have been documented. However, a systematic analysis assessing the frequency of this phenomenon across enzyme space is still lacking. This work uses the Query3d structural comparison algorithm to integrate for the first time detailed knowledge about catalytic residues, available through the Catalytic Site Atlas (CSA), with the evolutionary information provided by the Structural Classification of Proteins (SCOP) database. This study considers two modes of convergent evolution: (i) mechanistic analogues which are enzymes that use the same mechanism to perform related, but possibly different, reactions (considered here as sharing the first three digits of the EC number); and (ii) transformational analogues which catalyse exactly the same reaction (identical EC numbers), but may use different mechanisms. Mechanistic analogues were identified in 15% (26 out of 169) of the three-digit EC groups considered, showing that this phenomenon is not rare. Furthermore 11 of these groups also contain transformational analogues. The catalytic triad is the most widespread active site; the results of the structural comparison show that this mechanism, or variations thereof, is present in 23 superfamilies. Transformational analogues were identified for 45 of the 951 four-digit EC numbers present within the CSA and about half of these were also mechanistic analogues exhibiting convergence of their active sites. This analysis has also been extended to the whole Protein Data Bank to provide a complete and manually curated list of the all the transformational analogues whose structure is classified in SCOP. The results of this work show that the phenomenon of convergent evolution is not rare, especially when considering large enzymatic families.  相似文献   

4.
Based on experimental results, two different kinetic models and reaction mechanisms of penicillin amidase (penicillin amidohydrolase EC 3.5.1.11) have been studied and analysed. The enzyme from Escherichia coli shows an ordered uni-bi reaction mechanism while the enzyme from Bacillus megaterium shows kinetics of double inhibition by the reaction products. The difference in the reaction mechanism is elucidated by two possible mechanistic models on a theoretical basis. Also suggested is the analytical method by which two different reaction mechanisms can be tested and confirmed.  相似文献   

5.
The MACiE database contains 223 distinct step-wise enzyme reaction mechanisms and holds representatives from each EC sub-subclass where there is a crystal structure and sufficient evidence in the literature to support a mechanism. Each catalytic step of every reaction sequence in MACiE is fully annotated so that it includes the function of the catalytic residues involved in the reaction and the mechanism by which substrates are transformed into products. Using MACiE as a knowledge base, we have seen that the top 10 most catalytic residues are histidine, aspartate, glutamate, lysine, cysteine, arginine, serine, threonine, tyrosine and tryptophan. Of these only seven (cysteine, histidine, aspartate, lysine, serine, threonine and tyrosine) dominate catalysis and provide essentially five functional roles that are essential. Stabilisation is the most common and essential role for all classes of enzyme, followed by general acid/base (proton acceptor and proton donor) functionality, with nucleophilic addition following closely behind (nucleophile and nucleofuge). We investigated the occurrence of these residues in MACiE and the Catalytic Site Atlas and found that, as expected, certain residue types are associated with each functional role, with some residue types able to perform diverse roles. In addition, it was seen that different EC classes of enzyme have a tendency to employ different residues for catalysis. Further, we show that whilst the differences between EC classes in catalytic residue composition are not immediately obvious from the general classes of Ingold mechanisms, there is some weak correlation between the mechanisms involved in a given EC class and the functions that the catalytic amino acid residues are performing. The analysis presented here provides a valuable insight into the functional roles of catalytic amino acid residues, which may have applications in many aspects of enzymology, from the design of novel enzymes to the prediction and validation of enzyme reaction mechanisms.  相似文献   

6.
Here, we describe the latest developments on the mechanistic characterization of poly(ADP-ribose) polymerase (PARP) [EC 2.4.2.30], a DNA-dependent enzyme that catalyzes the synthesis of protein-bound ADP-ribose polymers in eucaryotic chromatin. A detailed kinetic analysis of the automodification reaction of PARP in the presence of nicked dsDNA indicates that protein-poly(ADP-ribosyl)ation probably occurs via a sequential mechanism since enzyme-bound ADP-ribose chains are not reaction intermediates. The multiple enzymatic activities catalyzed by PARP (initiation, elongation, branching and self-modification) are the subject of a very complex regulatory mechanism that may involve allosterism. For instance, while the NAD+ concentration determines the average ADP-ribose polymer size (polymerization reaction), the frequency of DNA strand breaks determines the total number of ADP-ribose chains synthesized (initiation reaction). A general discussion of some of the mechanisms that regulate these multiple catalytic activities of PARP is presented below.  相似文献   

7.
Oxygen (18) was used as a mechanistic probe in the investigation of several different sources of fructose 1,6-bisphosphate aldolases (EC 4.1.2.13) which, due to differences in some physical and chemical properties, could not be clearly put in either Class I or Class II. Aldolases may be identified as belonging to a particular class on the basis of the amount of 180 retained in the dihydroxyacetone phosphate produced in the cleavage of [2-Oxygen (18)] fructose 1,6-biphosphate. The mechanism of Class I aldolases involves an obligatory exchange of the C-2 oxygen atom of fructose 1,6-bisphosphate, leading to the absence of 180 in the product. For Class II aldolases, the C-2 oxygen atom is retained in the aldol cleavage reaction. Aldolases from spinach and L. casei base intermediate. Aldosase from C. perfringens was found to be Class II, suggesting a metal-chelate intermediate. Results with Euglena aldolase confirmed that this organism contained both types of aldolases with approximately 78% Class II. The data show that despite a wide variety of physical and chemical properties, there are important mechanistic similarities within each class of enzyme and significant differences between the two classes. The determination of 180 retention in the product of the cleavage reaction using [2-180] fructose 1,6-biphosphate is an accurate means of classifying these enzymes since it is a measure of a property which is directly related to the mechanisms of the reactions.  相似文献   

8.
Bioaffinity assays are usually calibrated by using a set of standard measurements fitted to a simple empirical model. In this paper, a new calibration approach based on mechanistic model of reaction kinetics is presented. When the calibration assay is known in terms of reaction mechanism, incubation time, initial concentration, and rate constants, one can back-calculate concentrations of unknown samples measured in a nonequilibrium time point. This paper describes a calculation method of unknown sample concentrations based on kinetically measured single calibration assay point. The theoretical results are verified by two common in-vitro diagnostic assays.  相似文献   

9.
This review deals with biochemical and physiological aspects of plant ornithine d-aminotransferase (OAT, EC 2.6.1.13). OAT is a mitochondrial enzyme containing pyridoxal-5′-phosphate as a cofactor, which catalyzes the conversion of L-ornithine to L-glutamate γ-semialdehyde using 2-oxoglutarate as a terminal amino group acceptor. It has been described in humans, animals, insects, plants and microorganisms. Based on the crystal structure of human OAT, both substrate binding and reaction mechanism of the enzyme are well understood. OAT shows a large structural and mechanistic similarity to other enzymes from the subgroup III of aminotransferases, which transfer an amino group from a carbon atom that does not carry a carboxyl function. In plants, the enzyme has been implicated in proline biosynthesis and accumulation (via pyrroline-5-carboxylate), which represents a way to regulate cellular osmolarity in response to osmotic stress. However, the exact metabolic pathway involving OAT remains a subject of controversy.Key words: ornithine δ-aminotransferase, osmotic stress, proline, Δ1-pyrroline-5-carboxylate, pyridoxal-5′-phosphate, semialdehyde, transamination  相似文献   

10.
3-Carboxy-cis,cis-muconate lactonizing enzyme (CMLE; EC 5.5.1.5) from Neurospora crassa catalyzes the reversible gamma-lactonization of 3-carboxy-cis,cis-muconate by a syn-1,2 addition-elimination reaction. The stereochemical and regiochemical course of the reaction is (i) opposite that of CMLE from Pseudomonas putida (EC 5.5.1.2) and (ii) identical to that of cis,cis-muconate lactonizing enzyme (MLE; EC 5.5.1.1) from P. putida. In order to determine the mechanistic and evolutionary relationships between N. crassa CMLE and the procaryotic cycloisomerases, we have purified CMLE from N. crassa to homogeneity and determined its nucleotide sequence from a cDNA clone isolated from a p-hydroxybenzoate-induced N. crassa cDNA library. The deduced amino acid sequence predicts a protein of 41.2 kDa (365 residues) which does not exhibit sequence similarity with any of the bacterial cycloisomerases. The cDNA encoding N. crassa CMLE was expressed in Escherichia coli, and the purified recombinant protein exhibits physical and kinetic properties equivalent to those found for the isolated N. crassa enzyme. We also report that N. crassa CMLE possesses substantially reduced yet significant levels of MLE activity with cis,cis-muconate and, furthermore, does not appear to be dependent on divalent metals for activity. These data suggest that the N. crassa CMLE may represent a novel eucaryotic motif in the cycloisomerase enzyme family.  相似文献   

11.
Zhu Y  Silverman RB 《Biochemistry》2008,47(8):2231-2243
Despite the essential biological importance of reactions that involve heme, mechanisms of heme reactions in enzymes like nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s) are still not well-understood. This Perspective on NOS, HO, and CYP450 mechanisms is written from the point of view of the heme chemistry. Steps in the classical heme catalytic cycle are discussed based on the specific environment within each of these enzymes. Elucidation of the mechanisms of NOS inactivation by some substrate analogues provides important mechanistic clues to the NOS catalytic mechanism. On the basis of mechanistic studies of NOS inactivation by amidine analogues of l-arginine and other previous mechanistic results, a new mechanism for NOS-catalyzed l-arginine NG-hydroxylation (the first half of the catalytic reaction) is proposed in this Perspective. The key step in the second half of the NOS catalytic reaction, the internal electron transfer between the substrate and heme, is discussed on the basis of mechanistic results of NOS inactivation by NG-allyl-l-arginine and the structures of the substrate intermediates. Elucidation of the mechanism of NOS inactivation by amidines, which leads to heme degradation, also provides important mechanistic implications for heme oxygenase-catalyzed heme catabolism. Focusing on the meso-hydroxylation step during inactivation of NOS by amidines as well as the HO-catalyzed reaction, the essential nature of the heme-oxygen species responsible for porphyrin meso-hydroxylation is discussed. Finally, on the basis of the proposed heme degradation mechanism during NOS inactivation and the HO-catalyzed reaction, the mechanism for the formation of the monooxygenated heme species in P450-catalyzed reactions is discussed.  相似文献   

12.
H W Chih  E N Marsh 《Biochemistry》1999,38(41):13684-13691
Glutamate mutase catalyzes the reversible isomerization of L-glutamate to L-threo-3-methylaspartate. Rapid quench experiments have been performed to measure apparent rate constants for several chemical steps in the reaction. The formation of substrate radicals when the enzyme was reacted with either glutamate or methylaspartate was examined by measuring the rate at which 5'-deoxyadenosine was formed, and shown to be sufficiently fast for this step to be kinetically competent. Furthermore, the apparent rate constant for 5'-deoxyadenosine formation was very similar to that measured previously for cleavage of the cobalt-carbon bond of adenosylcobalamin by the enzyme, providing further support for a mechanism in which homolysis of the coenzyme is coupled to hydrogen abstraction from the substrate. The pre-steady-state rates of methylaspartate and glutamate formation were also investigated. No burst phase was observed with either substrate, indicating that product release does not limit the rate of catalysis in either direction. For the conversion of glutamate to methylaspartate, a single chemical step appeared to dominate the overall rate, whereas in the reverse direction a lag phase was observed, suggesting the accumulation of an intermediate, tentatively ascribed to glycyl radical and acrylate. The rates of formation and decay of this intermediate were also sufficiently rapid for it to be kinetically competent. When combined with information from previous mechanistic studies, these results allow a qualitative free energy profile to constructed for the reaction catalyzed by glutamate mutase.  相似文献   

13.
Mechanism of oxygen activation by tyrosine hydroxylase   总被引:5,自引:0,他引:5  
T A Dix  D M Kuhn  S J Benkovic 《Biochemistry》1987,26(12):3354-3361
The mechanism by which the tetrahydropterin-requiring enzyme tyrosine hydroxylase (TH) activates dioxygen for substrate hydroxylation was explored. TH contains one ferrous iron per subunit and catalyzes the conversion of its tetrahydropterin cofactor to a 4a-carbinolamine concomitant with substrate hydroxylation. These results are in accord with shared mechanisms of oxygen activation by TH and the more commonly studied tetrahydropterin-dependent enzyme phenylalanine hydroxylase (PAH) and strongly suggest that a peroxytetrahydropterin is the hydroxylating species generated during TH turnover. In addition, TH can also utilize H2O2 as a cofactor for substrate hydroxylation, a result not previously established for PAH. A detailed mechanism for the reaction is proposed. While the overall pattern of tetrahydropterin-dependent oxygen activation by TH and PAH is similar, the H2O2-dependent hydroxylation performed by TH provides an indication that subtle differences in the Fe ligand field exist between the two enzymes. The mechanistic ramifications of these results are briefly discussed.  相似文献   

14.
Two conflicting mechanisms have been proposed for formyltetrahydrofolate synthetase (EC 6.3.4.3). Detailed studies with a clostridial enzyme support a sequential mechanism, while a stepwise mechanism with formation of a dissociable intermediate has been proposed for the Peptococcus aerogenes synthetase. However, the data supporting the P. aerogenes mechanism were obtained using synthetase of questionable purity and the results supporting the mechanism could be attributed to contaminating activities. Consequently, uncertainty still exists with regard to the enzyme mechanism. To resolve this uncertainty, the P. aerogenes formyltetrahydrofolate synthetase has been purified to homogeneity and used in experiments to reinvestigate the reaction mechanism. The results of P1:ATP, ADP:ATP, and formate:10-formyltetrahydrofolate exchange experiments as well as a steady state kinetic analysis revealed no difference in the mechanisms of the P. aerogenes or clostridial synthetases. The results are inconsistent with a stepwise mechanism involving a dissociable intermediate and consistent only with a sequential mechanism.  相似文献   

15.
SUMMARY: MACiE (mechanism, annotation and classification in enzymes) is a publicly available web-based database, held in CMLReact (an XML application), that aims to help our understanding of the evolution of enzyme catalytic mechanisms and also to create a classification system which reflects the actual chemical mechanism (catalytic steps) of an enzyme reaction, not only the overall reaction. AVAILABILITY: http://www-mitchell.ch.cam.ac.uk/macie/.  相似文献   

16.
Using a novel method to map and cluster chemical reactions, we have re-examined the chemistry of the ligases [Enzyme Commission (EC) Class 6] and their associated protein families in detail. The type of bond formed by the ligase can be automatically extracted from the equation of the reaction, replicating the EC subclass division. However, this subclass division hides considerable complexities, especially for the C–N forming ligases, which fall into at least three distinct types. The lower levels of the EC classification for ligases are somewhat arbitrary in their definition and add little to understanding their chemistry or evolution. By comparing the multi-domain architecture of the enzymes and using sequence similarity networks, we examined the links between overall reaction and evolution of the ligases. These show that, whilst many enzymes that perform the same overall chemistry group together, both convergent (similar function, different ancestral lineage) and divergent (different function, common ancestor) evolution of function are observed. However, a common theme is that a single conserved domain (often the nucleoside triphosphate binding domain) is combined with ancillary domains that provide the variation in substrate binding and function.  相似文献   

17.
A theoretical analysis of the distinguishability problem of two rival models of the single enzyme-single substrate reaction, the Michaelis-Menten and Henri mechanisms, is presented. We also outline a general approach for analysing the structural indistinguishability between two mechanisms. The approach involves constructing, if possible, a smooth mapping between the two candidate models. Evans et al. [N.D. Evans, M.J. Chappell, M.J. Chapman, K.R. Godfrey, Structural indistinguishability between uncontrolled (autonomous) nonlinear analytic systems, Automatica 40 (2004) 1947-1953] have shown that if, in addition, either of the mechanisms satisfies a particular criterion then such a transformation always exists when the models are indistinguishable from their experimentally observable outputs. The approach is applied to the single enzyme-single substrate reaction mechanism. In principle, mechanisms can be distinguished using this analysis, but we show that our ability to distinguish mechanistic models depends both on the precise measurements made, and on our knowledge of the system prior to performing the kinetics experiments.  相似文献   

18.
(S)-Hydroxynitrile lyase (EC 4.1.2.39) from Hevea brasiliensis(rubber tree) catalyzes the reversible cleavage of cyanohydrins to aldehydes or ketones and prussic acid (HCN). Enzyme kinetics in both directions was studied on a model system with mandelonitrile, benzaldehyde, and HCN using two different methods-initial rate measurements and progress curve analysis. To discriminate between possible mechanisms with the initial rate method, product inhibition was studied. Benzaldehyde acts as a linear competitive inhibitor against mandelonitrile whereas HCN shows S-linear I-parabolic mixed-type inhibition. These results indicate an Ordered Uni Bi mechanism with the formation of a dead-end complex of enzyme, (S)-mandelonitrile and HCN. Prussic acid is the first product released from the enzyme followed by benzaldehyde. For progress curve analysis, a kinetic model of an Ordered Uni Bi mechanism including a dead-end complex, enzyme inactivation, and the chemical parallel reaction was set up, which described the experimental values very well. From the reaction rates obtained the kinetic constants were calculated and compared with the ones obtained from the initial rate method. Good agreement could be achieved between the two methods supporting the suggested mechanism. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

19.
Bashor C  Denu JM  Brennan RG  Ullman B 《Biochemistry》2002,41(12):4020-4031
Adenine phosphoribosyltransferase (APRT, EC 2.4.2.7) catalyzes the reversible phosphoribosylation of adenine from alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and PP(i). Three-dimensional structures of the dimeric APRT enzyme from Leishmania donovani (LdAPRT) bear many similarities to other members of the type 1 phosphoribosyltransferase family but do not reveal the structural basis for catalysis (Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533-3545). To address this issue, a steady state and transient kinetic analysis of the enzyme was performed in order to determine the catalytic mechanism. Initial velocity and product inhibition studies indicated that LdAPRT follows an ordered sequential mechanism in which PRPP is the first substrate to bind and AMP is the last product to leave. This mechanistic model was substantiated by equilibrium isotope exchange and fluorescence binding studies, which provided dissociation constants for the LdAPRT-PRPP and LdAPRT-AMP binary complexes. Pre-steady-state kinetic analysis of the forward reaction revealed a burst in product formation indicating that phosphoribosyl transfer proceeds rapidly relative to some rate-limiting product release event. Transient fluorescence competition experiments enabled measurement of rates of binary complex dissociation that implicated AMP release as rate-limiting for the forward reaction. Kinetics of product ternary complex formation were evaluated using the fluorophore formycin AMP and established rate constants for pyrophosphate binding to the LdAPRT-formycin AMP complex. Taken together, these data enabled the complete formulation of an ordered bi-bi kinetic mechanism for LdAPRT in which all of the rate constants were either measured or calculated.  相似文献   

20.
Diaminomaleonitrile, a tetramer of cyanide, was examined as a possible antagonist to cyanide inhibition of cytochrome oxidase (EC 1.9.3.1). This compound was found to inhibit cytochrome oxidase in vitro; however, despite their structural similarities, diaminomaleonitrile and cyanide inhibit cytochrome oxidase by different mechanisms and bind to the enzyme at different sites. Diaminomaleonitrile inhibition of cytochrome oxidase is described in terms of a partially competitive mechanism. Biological oxidation of diaminomaleonitrile may lead to the formation of cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号