首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoniazid (INH), a front-line antituberculosis agent, is activated by mycobacterial catalase-peroxidase KatG, converting INH into bactericidal reactive species. Here we investigated the requirements and the pathway of nitric oxide (NO*) generation during oxidative activation of INH by Mycobacterium tuberculosis KatG in vitro. We also provide in vivo evidence that INH-derived NO* can inhibit key mycobacterial respiratory enzymes, which may contribute to the overall antimycobacterial action of INH.  相似文献   

2.
The catalase-peroxidase KatG of Mycobacterium tuberculosis plays a central role in the mechanism of action of the anti-tubercular drug isoniazid (INH). Like other bacterial catalases, mycobacterial catalase-peroxidases are dual active enzymes with both catalase and peroxidase activities in the same protein molecule. In our previous study, we showed that iron deprivation resulted in the loss of peroxidase activity in several non-pathogenic mycobacterial species. Here we extended the study to pathogenic mycobacteria and showed that the peroxidase activity, associated with iron-sufficient (4 μg Fe/ml) conditions of growth was responsible for INH activation. Upon iron deprivation (0.02 μg Fe/ml), peroxidase activity was abolished and there was no activation of INH, as demonstrated both by INH-mediated NBT reduction (spectrophotometrically and activity staining in gels) and by viability studies as assayed by the microplate Alamar Blue assay (MABA). In the viability assay, iron-sufficient M. tuberculosis, Mycobacterium bovis and Mycobacterium bovis BCG were susceptible to INH and iron-deficient organisms expressing negligible peroxidase survived high concentrations of the drug. It␣is well known that M. tuberculosis is sensitive to low concentrations of INH while the minimum inhibitory concentration of the drug is quite high for other mycobacteria, especially the non-pathogenic species. We showed this difference to be due to the specificity of the peroxidase for the drug. As withholding of iron is one of the host’s mechanisms of controlling an invading pathogen, the implications of these observations on the efficacy of the anti-tubercular drug INH are discussed with reference to the iron status within the human host.  相似文献   

3.
Genetic and biochemical evidence has implicated two different target enzymes for isoniazid (INH) within the unique type II fatty acid synthase (FAS) system involved in the production of mycolic acids. These two components are an enoyl acyl carrier protein (ACP) reductase, InhA, and a beta-ketoacyl-ACP synthase, KasA. We compared the consequences of INH treatment of Mycobacterium tuberculosis (MTB) with two inhibitors having well-defined targets: triclosan (TRC), which inhibits InhA; and thiolactomycin (TLM), which inhibits KasA. INH and TLM, but not TRC, upregulate the expression of an operon containing five FAS II components, including kasA and acpM. Although all three compounds inhibit mycolic acid synthesis, treatment with INH and TLM, but not with TRC, results in the accumulation of ACP-bound lipid precursors to mycolic acids that were 26 carbons long and fully saturated. TLM-resistant mutants of MTB were more cross-resistant to INH than TRC-resistant mutants. Overexpression of KasA conferred more resistance to TLM and INH than to TRC. Overexpression of InhA conferred more resistance to TRC than to INH and TLM. Co-overexpression of both InhA and KasA resulted in strongly enhanced levels of INH resistance, in addition to cross-resistance to both TLM and TRC. These results suggest that these components of the FAS II complex are not independently regulated and that alterations in the expression level of InhA affect expression levels of KasA. Nonetheless, INH appeared to resemble TLM more closely in overall mode of action, and KasA levels appeared to be tightly correlated with INH sensitivity.  相似文献   

4.
5.
The katE gene, which encodes the catalase HPII of Mycobacterium avium   总被引:3,自引:0,他引:3  
Disseminated Mycobacterium avium-Mycobacterium intracellular disease is a prevalent opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). These pathogens are generally resistant to isoniazid (INH), a powerful antituberculosis drug. It is now generally accepted that the INH susceptibility of Mycobacterium tuberculosis results from the transformation of the drug into a toxic derivative, as a result of the action of the enzyme catalase-peroxidase (HPI), encoded by the katG gene. It has been speculated that the presence of a second catalase (HPII) in some mycobacterial species, but lacking in M. tuberculosis, may impair the action of INH. In this report, the nucleotide sequence of the M. avium katE gene, encoding catalase HPII, is described. This enzyme shows strong similarity to Escherichia coli catalase HPII and eukaryotic catalases. All amino acids previously postulated as participating directly in catalysis by liver catalase and most of the amino acids binding the prosthetic group are conserved in M. avium catalase HPII. The enzyme is expressed in E. coli and is inhibited by 3-amino -l,2,4 triazole (AT). Furthermore, Southern blot hybridizations and polymerase chain reaction experiments demonstrate the distribution of katE gene in several mycobacterial species. To evaluate the potentially antagonistic effect of HPII catalase on INH susceptibility, the katE gene was transformed into M. tuberculosis H37Rv and the minimum inhibitory concentration (MIC) for INH was determined. Despite strong expression of the katEgene, no change in MIC was observed, thus ruling out a possible contribution of this enzyme to the natural resistance of M. avium to the drug. The availability of the gene probe, encoding the second mycobacterial catalase HPII, should open the way for the development of new drugs and diagnostic tests to combat drug-resistant pathogen strains.  相似文献   

6.
Isoniazid (INH) is a front-line drug used in the treatment of tuberculosis (TB), a disease that remains a major cause of death worldwide. Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase-peroxidase (CP) enzyme. Recent studies have suggested that acetylation of INH by the arylamine-N-acetyltransferase from Mycobacterium tuberculosis (TBNAT) may be a possible cause of inactivation of the drug thus resulting in resistant strains. In this study, computational techniques were applied to investigate the binding of isoniazid to three TBNAT isoforms: wild type, G68R and L125M. Since there is no experimental structure available, molecular dynamics (MD) simulations were initially used for the refinement of TBNAT homology models. Distinct conformations of the models were selected during the production stage of MD simulations for molecular docking experiments with the drug. Finally, each mode of binding was refined by new molecular MD simulations. Essential dynamics (ED) analysis and linear interaction energy calculations (LIE) were used to evaluate the impact of amino acid substitutions on the structural and binding properties of the enzymes. The results suggest that the wild type and the G68R TBNATs have a similar pattern of affinity to INH. On the other hand, the calculated enzyme-INH dissociation constant (KD) was estimated 33 times lower for L125M isoform in comparison with wild type enzyme. This last finding is consistent with the hypothesis that isolated mutations in the tbnat gene can produce M. tuberculosis strains resistant to isoniazid.  相似文献   

7.
The mycobacterial FASII multi-enzyme complex has been identified to be a target of Ser/Thr protein kinases (STPKs) of Mycobacterium tuberculosis (MTB), with substrates, including the malonyl-CoA:ACP transacylase (FabD) and the β-ketoacyl-ACP synthases KasA and KasB. These proteins are phosphorylated by various kinases in vitro. The present study links the correlation of FASII pathway with serine threonine protein kinase of MTB. In the preliminary finding, we have shown that mycobacterial protein Rv3080c (PknK) phosphorylates FabD and the knockdown of PknK protein in mycobacteria down regulates FabD expression. This event leads to the differential inhibition of mycobacteria in the presence of isoniazid (INH), as the inhibition of growth of mycobacteria in the presence of INH is enhanced in PknK deficient mycobacteria.  相似文献   

8.
Zhao X  Yu S  Magliozzo RS 《Biochemistry》2007,46(11):3161-3170
The first-line antituberculosis drug isonicotinic hydrazide (INH) is a prodrug whose bactericidal function requires activation by Mycobacterium tuberculosis catalase-peroxidase (KatG) to produce an acyl-NAD adduct. Peroxidation of INH is considered a required catalytic process for drug action. The binding of INH and a series of hydrazide analogues to resting KatG was examined using optical and calorimetric techniques to provide thermodynamic parameters, binding stoichiometries, and kinetic constants (on and off rates). This work revealed high-affinity binding of these substrates to a small fraction of ferric enzyme in a six-coordinate heme iron form, a species most likely containing a weakly bound water molecule, which accumulates during storage of the enzyme. The binding of hydrazides is associated with a large enthalpy loss (>100 kcal/mol); dissociation constants are in the range of 0.05-1.6 microM, and optical stopped-flow measurements demonstrated kon values in the range of 0.5-27 x 10(3) M-1 s-1 with very small koff rates. Binding parameters did not depend on pH in the range 5-8. High-affinity binding of INH is disrupted in two mutant enzymes bearing replacements of key distal side residues, KatG[W107F] and KatG[Y229F]. The rates of reduction of KatG Compound I by hydrazides parallel the on rates for association with the resting enzyme. In a KatG-mediated biomimetic activation assay, only isoniazid generated in good yield the acyl-NAD adduct which is considered a key molecule in INH action, providing a better understanding of the action mechanism of INH.  相似文献   

9.
This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity.  相似文献   

10.
Isoniazid is a key drug used in the treatment of tuberculosis. Isoniazid is a pro-drug, which, after activation by the katG-encoded catalase peroxidase, reacts nonenzymatically with NAD(+) and NADP(+) to generate several isonicotinoyl adducts of these pyridine nucleotides. One of these, the acyclic 4S isomer of isoniazid-NAD, targets the inhA-encoded enoyl-ACP reductase, an enzyme essential for mycolic acid biosynthesis in Mycobacterium tuberculosis. Here we show that the acyclic 4R isomer of isoniazid-NADP inhibits the M. tuberculosis dihydrofolate reductase (DHFR), an enzyme essential for nucleic acid synthesis. This biologically relevant form of the isoniazid adduct is a subnanomolar bisubstrate inhibitor of M. tuberculosis DHFR. Expression of M. tuberculosis DHFR in Mycobacterium smegmatis mc(2)155 protects cells against growth inhibition by isoniazid by sequestering the drug. Thus, M. tuberculosis DHFR is the first new target for isoniazid identified in the last decade.  相似文献   

11.
AccD6 (acetyl coenzyme A (CoA) carboxylase), plays an important role in mycolic acid synthesis of Mycobacterium tuberculosis (Mtb). Induced gene expression by isoniazid (isonicotinylhydrazine - INH), anti-tuberculosis drug) shows the expression of accD6. It is our interest to study the binding of activated INH with the AccD6 model using molecular docking procedures. The study predicts a primary binding site for activated INH (isonicotinyl acyl radical) in AccD6 as a potential target.  相似文献   

12.
Mycobacterium tuberculosis catalase‐peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro‐drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD+/NADH forming an isoniazid‐NADH adduct that ultimately confers anti‐tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG‐derived INH‐resistance, we have compared the catalytic properties (including the ability to form the INH‐NADH adduct) of the wild‐type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met‐Tyr‐Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance‐conferring mutants were then assayed for their ability to generate the INH‐NADH adduct in the presence of peroxide (t‐BuOOH and H2O2), superoxide, and no exogenous oxidant (air‐only background control). The results demonstrate that residue location plays a critical role in determining INH‐resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant‐specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH‐resistance that is not correlated with the formation of the INH‐NADH adduct.  相似文献   

13.
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (I21V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents.  相似文献   

14.
NADH pyrophosphatase (NudC) catalyses the hydrolysis of NAD(H) to AMP and NMN(H) [nicotinamide mononucleotide (reduced form)]. NudC multiple sequence alignment reveals that homologues from most Mycobacterium tuberculosis isolates, but not other mycobacterial species, have a polymorphism at the highly conserved residue 237. To elucidate the functional significance of this polymorphism, comparative analyses were performed using representative NudC isoforms from M. tuberculosis H37Rv (NudC(Rv)) and M. bovis BCG (NudC(BCG)). Biochemical analysis showed that the P237Q polymorphism prevents dimer formation, and results in a loss of enzymatic activity. Importantly, NudC(BCG) was found to degrade the active forms of isoniazid (INH), INH-NAD and ethionamide (ETH), ETH-NAD. Consequently, overexpression of NudC(BCG) in Mycobacterium smegmatis mc(2)155 and M. bovis BCG resulted in a high level of resistance to both INH and ETH. Further genetic studies showed that deletion of the nudC gene in M. smegmatis mc(2)155 and M. bovis BCG resulted in increased susceptibility to INH and ETH. Moreover, inactivation of NudC in both strains caused a defect in drug tolerance phenotype for both drugs in exposure assays. Taken together, these data suggest that mycobacterial NudC plays an important role in the inactivation of INH and ETH.  相似文献   

15.
Isoniazid is a potent and selective therapeutic prodrug agent used to treat infections by Mycobacterium tuberculosis. Although it has been used clinically for over five decades its full mechanism of action is still being elucidated. Essential to its mechanism of action is the activation of isoniazid to a reactive intermediate, the isonicotinyl acyl radical, by the catalase-peroxidase KatG. The isonicotinyl acyl radical then reacts with NAD producing an inhibitor of the NADH-dependent enoyl ACP reductase responsible for mycolic acid synthesis as its primary target. However, the initial oxidation of isoniazid by KatG has also revealed alternative reaction pathways leading to an array of carbon-, oxygen-, and nitrogen-centered radical intermediates. It has also been reported that isoniazid produces nitric oxide in the presence of KatG and hydrogen peroxide. In this study, the temperature-dependent rate constants for the hydroxyl radical oxidation and solvated electron reduction of isoniazid and two model compounds have been studied. Based on these data the initial oxidation of isoniazid by the hydroxyl radical has been shown to predominantly occur at the primary nitrogen of the hydrazyl moiety, consistent with the postulated mechanism for the formation of the isonicotinyl radical. The hydrated electron reduction occurred mostly at the pyridine ring. Concomitant EPR spin-trap measurements under a variety of oxidizing and reducing conditions did not show any evidence of nitric oxide production as had been previously reported. Finally, examination of the transient absorption spectra obtained for hydrated electron reaction with isoniazid demonstrated for the first time an initial reduced transient identified as the isonicotinyl acyl radical produced from isoniazid.  相似文献   

16.
The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH.  相似文献   

17.
In Mycobacterium tuberculosis isoniazid (INH)-susceptibility and the presence of a thermolabile catalase-peroxidase (T-catalase) are nearly always associated. It is shown in this study that an INH-susceptible strain of M. aurum had a T-catalase activity while its resistant mutants did not, but an in vitro susceptible strain of M. avium had a strong catalase activity without any detectable peroxidase properties. Synthesis of mycolic acids is a genus-specific target for INH and there is an excellent parallelism between INH-susceptibility of intact cells and that of a cell-free system synthesizing mycolic acids. We investigated whether the INH-inhibition of mycolic acid cell-free synthesis was dependent on a T-catalase activity in M. aurum and M. avium: no catalase activity was detectable in any of the cell-free systems tested, and addition of T-catalase from susceptible M. aurum strain to an INH-resistant system did not render it sensitive. So INH can inhibit mycolic acid synthesis independently of the presence of a T-catalase. An INH-susceptible cell-free system prepared from INH-treated (at the MIC) cells was progressively and irreversibly inhibited, while incubation of the same susceptible system in the presence of INH did not result in a significant irreversible inhibition. The possible participation of T-catalase in the irreversible effect of INH is discussed.  相似文献   

18.
This study evaluates the hepatoprotective effect of carotenoids against isoniazid (INH) and rifampicin (RIF). Thirty-six adult rats were divided into the following 4 groups: (1) control group treated with normal saline; (2) INH + RIF group treated with 50?mg·(kg body mass)-1·day-1 of INH and RIF each; (3) INH + RIF+ carotenoids group treated with 50?mg·(kg body mass)-1·day-1 of INH and RIF each and 10?mg·(kg body mass)-1·day-1 of carotenoids; and (4) carotenoids group treated with 10?mg·(kg body mass)-1·day-1 of carotenoids for 28?days intragastrically. Oxidative stress and antioxidant levels in liver and blood, liver histology and change in transaminases were measured in all the above-mentioned groups. There was an increase in lipid peroxidation with a reduction in thiols, catalase, and superoxide dismutase (SOD) in the liver and blood of rats accompanied by an increase in transaminases, bilirubin, and alkaline phosphatase. Treatment with carotenoids along with INH + RIF partially reversed lipid peroxidation, thiols, catalase, and SOD in the liver and blood of rats. Elevated levels of the enzymes in serum were also reversed partially by this treatment. The degree of necrosis, portal triaditis, and inflammation were also lowered in the carotenoids group. In conclusion, carotenoids supplementation in INH + RIF treated rats showed partial protection.  相似文献   

19.
Structural analysis of compounds identified as lipid I and II from Mycobacterium smegmatis demonstrated that the lipid moiety is decaprenyl phosphate; thus, M. smegmatis is the first bacterium reported to utilize a prenyl phosphate other than undecaprenyl phosphate as the lipid carrier involved in peptidoglycan synthesis. In addition, mass spectrometry showed that the muropeptides from lipid I are predominantly N-acetylmuramyl-L-alanine-D-glutamate-meso-diaminopimelic acid-D-alanyl-D-alanine, whereas those isolated from lipid II form an unexpectedly complex mixture in which the muramyl residue and the pentapeptide are modified singly and in combination. The muramyl residue is present as N-acetylmuramic acid, N-glycolylmuramic acid, and muramic acid. The carboxylic functions of the peptide side-chains of lipid II showed three types of modification, with the dominant one being amidation. The preferred site for amidation is the free carboxyl group of the meso-diaminopimelic acid residue. Diamidated species were also observed. The carboxylic function of the terminal D-alanine of some molecules is methylated, as are all three carboxylic acid functions of other molecules. This study represents the first structural analysis of mycobacterial lipid I and II and the first report of extensive modifications of these molecules. The observation that lipid I was unmodified strongly suggests that the lipid II intermediates of M. smegmatis are substrates for a variety of enzymes that introduce modifications to the sugar and amino acid residues prior to the synthesis of peptidoglycan.  相似文献   

20.
Isoniazid (INH, isonicotinic acid hydrazine) is one of only two therapeutic agents effective in treating tuberculosis. This prodrug is activated by the heme enzyme catalase peroxidase (KatG) endogenous to Mycobacterium tuberculosis but the mechanism of activation is poorly understood, in part because the binding interaction has not been properly established. The class I peroxidases ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP) have active site structures very similar to KatG and are also capable of activating isoniazid. We report here the first crystal structures of complexes of isoniazid bound to APX and CcP. These are the first structures of isoniazid bound to any activating enzymes. The structures show that isoniazid binds close to the delta-heme edge in both APX and CcP, although the precise binding orientation varies slightly in the two cases. A second binding site for INH is found in APX at the gamma-heme edge close to the established ascorbate binding site, indicating that the gamma-heme edge can also support the binding of aromatic substrates. We also show that in an active site mutant of soybean APX (W41A) INH can bind directly to the heme iron to become an inhibitor and in a different mode when the distal histidine is replaced by alanine (H42A). These structures provide the first unambiguous evidence for the location of the isoniazid binding site in the class I peroxidases and provide rationalization of isoniazid resistance in naturally occurring KatG mutant strains of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号