首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

2.
Jacob J  Schirmer RH  Gromer S 《FEBS letters》2005,579(3):745-748
The catalytic activity of selenocysteine-containing thioredoxin reductases can be mimicked by cysteine-variants if the local environment at the C-terminal redox center supports thiol activation. This concept of a linear catalytic site was challenged by structural data suggesting that the invariant residue His106 functions as a base catalyst for the dithiol-disulphide exchange reaction between enzyme and substrate. As reported here, we changed His106 to asparagine, glutamine, and phenylalanine in various C-terminal mutants of Drosophila melanogaster thioredoxin reductase. The catalytic activity dropped considerably, yet pH-profiles did not reveal differences, rendering a function for His106 as a base catalyst unlikely. Interestingly, the phenylalanine-mutants, designed as negative controls were the most active mutants which suggests rather a structural role of His106.  相似文献   

3.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

4.

Background

Mammalian thioredoxin reductases (TrxR) are selenoproteins with important roles in antioxidant defense and redox regulation, principally linked to functions of their main substrates thioredoxins (Trx). All major forms of TrxR are intracellular while levels in serum are typically very low.

Methods

Serum TrxR levels were determined with immunoblotting using antibodies against mouse TrxR1 and total enzyme activity measurements were performed, with serum and tissue samples from mouse models of liver injury, as triggered by either thioacetamide (TAA) or carbon tetrachloride (CCl4).

Results

TrxR levels in serum increased upon treatment and correlated closely with those of alanine aminotransferase (ALT), an often used serum biomarker for liver damage. In contrast, Trx1, glutathione reductase, superoxide dismutase or selenium-containing glutathione peroxidase levels in serum displayed much lower increases than TrxR or ALT.

Conclusions

Serum TrxR levels are robustly elevated in mouse models of chemically induced liver injury.

General significance

The exaggerated TrxR release to serum upon liver injury may reflect more complex events than a mere passive release of hepatic enzymes to the extracellular milieu. It can also not be disregarded that enzymatically active TrxR in serum could have yet unidentified physiological functions.  相似文献   

5.
The antioxidant enzyme glutathione peroxidase 4 (GPx4) is capable of reducing complex lipid hydroperoxides in addition to hydrogen peroxide and organic hydroperoxides. Mammals express three GPx4 isoforms that are targeted to nucleoli, mitochondria or cytosol via variable amino termini. To better understand the role of this important antioxidant enzyme in marine finfish, we determined the subcellular localisation of a GPx4 homologue from southern bluefin tuna (Thunnus maccoyii; SBT). We created constructs for the expression of the selenocysteine-to-cysteine mutant of SBT GPx4 (GPx4C) tagged with enhanced green fluorescent protein (EGFP), including or lacking a putative amino-terminal signal peptide, and expressed the fusion proteins in a fish cell line. Fluorescence microscopy revealed that the full-length GPx4C-EGFP fusion protein localised to the trans-Golgi, suggesting that tuna GPx4 may be directed to the secretory pathway. Anti-GFP immunoblotting of cell lysates and proteins from culture media showed that the secretion of SBT GPx4 into the culture medium required an amino-terminal signal peptide. According to available sequence data, the SBT GPx4 isoform studied here is representative of other piscine GPx4 isoforms, suggesting that the secretion of at least one GPx4 isoform may be common amongst teleost fish.  相似文献   

6.
Polycomb group (PcG) proteins maintain the spatial expression patterns of genes that are involved in cell-fate specification along the anterior-posterior (A/P) axis. This repression requires cis-acting silencers, which are called PcG response elements (PREs). One of the PcG proteins, Pleiohomeotic (Pho), which has a zinc finger DNA binding protein, plays a critical role in recruiting other PcG proteins to bind to PREs. In this study, we characterized the effects of a pho mutation on embryonic segmentation. pho maternal mutant embryos showed various segmental defects including pair-rule gene mutant patterns. Our results indicated that engrailed and even-skipped genes were misexpressed in pho mutant embryos, which caused embryonic segment defects.  相似文献   

7.
The bovine filarial worm Setaria cervi was found to have abundance of glutathione synthetase (GS; EC 6.3.2.3) activity, the enzyme being involved in catalysing the final step of glutathione (GSH) biosynthesis. A RP-HPLC method involving precolumn derivatization with o-phthalaldehyde has been followed for the estimation of GS activity in crude filarial preparations. Subcellular fractionation of the enzyme was undertaken and it was confirmed to be a soluble protein residing mainly in cytosolic fraction. Attempts to determine the Km value for L-gamma-glutamyl-L-cysteine gave a distinctly nonlinear double-reciprocal plot in which data obtained at relatively high dipeptide concentrations (>1 mM) extrapolate to a Km value of about 400 microM whereas data obtained at lower concentrations (<0.1 mM) extrapolate to a value of about 33 microM. Km was determined to be around 950 and 410 microM for ATP and glycine, respectively. The effect of various amino acids was studied on enzyme activity at 1mM concentration. L-cystine caused a significant enzyme inhibition of 11%. Preincubation with N-ethylmaleimide also resulted in significant inhibition of GS activity.  相似文献   

8.
Disulfide bond formation in the endoplasmic reticulum by the sulfhydryl oxidase Ero1 family is thought to be accompanied by the concomitant formation of hydrogen peroxide. Since secretory cells can make substantial amounts of proteins that contain disulfide bonds, the production of this reactive oxygen species could have potentially lethal consequences. Here, we show that two human proteins, GPx7 and GPx8, labeled as secreted glutathione peroxidases, are actually endoplasmic reticulum-resident protein disulfide isomerase peroxidases. In vitro, the addition of GPx7 or GPx8 to a folding protein along with protein disulfide isomerase and peroxide enables the efficient oxidative refolding of a reduced denatured protein. Furthermore, both GPx7 and GPx8 interact with Ero1α in vivo, and GPx7 significantly increases oxygen consumption by Ero1α in vitro. Hence, GPx7 and GPx8 may represent a novel route for the productive use of peroxide produced by Ero1α during disulfide bond formation.  相似文献   

9.
Although microvascular cell death is a well established hallmark of diabetic retinopathy, which is a major cause of vision loss, much remains to be learned about the functional changes that precede the onset of morphological damage to retinal blood vessels. Early alterations of function are of interest since they may contribute to the development of irreversible pathological events. Because one of the earliest retinal effects of diabetes is the dysregulation of blood flow, we asked whether diabetes alters the functional organization of the capillary/arteriolar complex, which is the operational unit that plays an important role in regulating local perfusion. In this study, the effect of diabetes on the electrotonic architecture of the retinal microvasculature was characterized. To do this, we quantified the efficacy by which voltages are transmitted between pairs perforated-patch pipettes sealed onto abluminal cells located at well defined locations in capillary/arteriolar complexes freshly isolated from the retinas of rats made diabetic by streptozotocin. Results of these dual recording experiments were compared with data from similar experiments performed on non-diabetic retinal microvessels. These experiments revealed that diabetes caused a ∼5-fold increase in the rate at which a voltage decays as it axially spreads through the retinal microvasculature. In contrast, the efficacy of radial abluminal cell/endothelial cell transmission was not significantly affected by diabetes. Based on the results of this study, which is the first to characterize how diabetes affects voltage transmission in capillary/arteriolar complexes of any tissue, we concluded that by selectively inhibiting axial transmission, diabetes alters the electrotonic architecture of the retinal microvasculature. This diabetes-induced alteration in the functional organization of the capillary/arteriolar unit is likely to impair its ability to efficiently and effectively regulate blood flow and thereby, may contribute to the progression of sight-threatening complications of diabetic retinopathy.  相似文献   

10.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Δ and gsh2Δ mutants. Expression of γ-glutamylcysteine synthetase Gsh1 in the gsh1Δ mutant rescued regeneration rate of hPTEN. Oxidized hPTEN was reduced by glutathione in a concentration- and time-dependent manner. Glutathionylated PTEN was detected. Incubation of 293T cells with BSO and knockdown expression of GCLc in HeLa cells by siRNA resulted in the delay of reduction of oxidized PTEN. Also, in HeLa cells transfected with GCLc siRNA, stimulation with epidermal growth factor resulted in the increase of oxidized PTEN and phosphorylation of Akt. These results suggest that the reduction of oxidized hPTEN is mediated by glutathione.  相似文献   

11.
This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.  相似文献   

12.
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.  相似文献   

13.
Human thioredoxin reductase (hTrxR) is a homodimeric flavoprotein crucially involved in the regulation of cellular redox reactions, growth and differentiation. The enzyme contains a selenocysteine residue at its C-terminal active site that is essential for catalysis. This redox center is located on a flexible arm, solvent-exposed and reactive towards electrophilic inhibitors, thus representing a target for antitumor drug development. During catalysis reducing equivalents are transferred from the cofactor NADPH to FAD, then to the N-terminal active site cysteine residues and from there to the flexible C-terminal part of the other subunit to be finally delivered to a variety of second substrates at the molecule's surface. Here we report the first crystal structure of hTrxR1 (Sec-->Cys) in complex with FAD and NADP(+) at a resolution of 2.8 A. From the crystals three different conformations of the carboxy-terminal arm could be deduced. The predicted movement of the arm is facilitated by the concerted action of the three side-chain residues of N418, N419 and W407, which act as a guiding bar for the C-terminal sliding process. As supported by previous kinetic data, the three visualized conformations might reflect different stages in enzymatic catalysis. Comparison with other disulfide reductases including human glutathione reductase revealed specific inhibitor binding sites in the intersubunit cavity of hTrxR that can be exploited for structure-based inhibitor development.  相似文献   

14.
Evolutionary innovation can allow a species access to a new ecological niche, potentially reducing competition with closely related species. While the vast majority of Drosophila flies feed on rotting fruit and other decaying matter, and are harmless to human activity, Drosophila suzukii, which has a morphologically modified ovipositor, is capable of colonizing live fruit that is still in the process of ripening, causing massive agricultural damage. Here, we conducted the first comparative analysis of this species and its close relatives, analysing both ovipositor structure and fruit susceptibility. We found that the ovipositor of the species most closely related to D. suzukii, Drosophila subpulchrella, has a similar number of enlarged, evolutionarily derived bristles, but a notably different overall shape. Like D. suzukii, D. subpulchrella flies are capable of puncturing the skin of raspberries and cherries, but we found no evidence that they could penetrate the thicker skin of two varieties of grapes. More distantly related species, one of which has previously been mistaken for D. suzukii, have blunt ovipositors with small bristles. While they did not penetrate fruit skin in any of the assays, they readily colonized fruit interiors where the skin was broken. Our results suggest that considering evolutionary context may be beneficial to the management of invasive species.  相似文献   

15.
The gene encoding the alpha subunit of the Drosophila Go protein is expressed early in embryogenesis in the precursor cells of the heart tube, of the visceral muscles, and of the nervous system. This early expression coincides with the onset of the mesenchymal-epithelial transition to which are subjected the cardial cells and the precursor cells of the visceral musculature. This gene constitutes an appropriate marker to follow this transition. In addition, a detailed analysis of its expression suggests that the cardioblasts originate from two subpopulations of cells in each parasegment of the dorsal mesoderm that might depend on the wingless and hedgehog signaling pathways for both their determination and specification. In the nervous system, the expression of Goalpha shortly precedes the beginning of axonogenesis. Mutants produced in the Goalpha gene harbor abnormalities in the three tissues in which the gene is expressed. In particular, the heart does not form properly and interruptions in the heart epithelium are repeatedly observed, henceforth the brokenheart (bkh) name. Furthermore, in the bkh mutant embryos, the epithelial polarity of cardial cells was not acquired (or maintained) in various places of the cardiac tube. We predict that bkh might be involved in vesicular traffic of membrane proteins that is responsible for the acquisition of polarity.  相似文献   

16.
Malaria parasite glutathione S-transferases (GSTs) are postulated to be essential for parasite survival by protecting the parasite against oxidative stress and buffering the detoxification of heme-binding compounds; therefore, GSTs are considered potential targets for drug development. In this study, we identified a Plasmodium vivax gene encoding GST (PvGST) and characterized the biochemical properties of the recombinant enzyme. The PvGST contained 618 bp that encoded 205 amino acids and shared a significant degree of sequence identity with GSTs from other Plasmodium species. The recombinant homodimeric enzyme had an approximate molecular mass of 50kDa and exhibited GSH-conjugating and GSH-peroxidase activities towards various model substrates. The optimal pH for recombinant PvGST (rPvGST) activity was pH 8.0, and the enzyme was moderately unstable at 37 degrees C. The K(m) values of rPvGST with respect to GSH and CDNB were 0.17+/-0.09 and 2.1+/-0.4mM, respectively. The significant sequence homology and similar biochemical properties of PvGST and Plasmodium falciparum GST (PfGST) indicate that they may have similar molecular structures. This information may be useful for the design of specific inhibitors for plasmodial GSTs as potential antimalarial drugs.  相似文献   

17.
GPx1 is one of the most important enzymes involved in oxidative balance so that, we studied the phenotype and genotype relationship of GPx1 activity and rs 1800668 (C/T) site and also evaluated the changes of GPx1 kinetic parameters in the rs 1800668 homozygotes. One hundred fifty eight subjects were recruited after clinical exams. The rs 1800668 (C/T) genotype distribution was identified using RFLP-PCR method. The hemolysate GPx1 activity was spectrophotometrically measured in a reaction coupled with glutathione reductase (GR). The GPx1 enzyme was purified using gel filtration chromatography with Sephacryl S-300 column and, Km(app) was studied in the rs 1800668 TT and CC homozygotes. The results showed that the GPx1 activity is significantly associated to the rs 1800668 (C/T) genotype distribution (P<0.05) so that, the GPx1 activity was high among the CC homozygotes (P<0.03). In addition, Km(app) for TBHP substrate in the TT homozygote (8.48 μM) was higher than the CC homozygote (5.74 μM). We concluded that the C allele within rs 1800668 position is related to the GPx1 activity and may be a potential factor involved in development of inflammatory events.  相似文献   

18.

Background

The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes.

Methods

The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed.

Results

Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN–TXNPx and TXN–GPxA redox pairs controlled by 90–100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH.

Conclusion

These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite.

General Significance

MCA studies provide rational and quantitative criteria to select enzymes for drug-target development.  相似文献   

19.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   

20.
Reconciliation of apparently contradictory experimental results obtained on the quinol: fumarate reductase (QFR), a dihaem-containing respiratory membrane protein complex from Wolinella succinogenes, was previously obtained by the proposal of the so-called E-pathway hypothesis. According to this hypothesis, transmembrane electron transfer via the haem groups is strictly coupled to co-transfer of protons via a transiently established, novel pathway, proposed to contain the side chain of residue Glu-C180 and the distal haem ring-C propionate as the most prominent components. This hypothesis has recently been supported by both theoretical and experimental results. Multiconformation continuum electrostatics calculations predict Glu-C180 to undergo a combination of proton uptake and conformational change upon haem reduction. Strong experimental support for the proposed role of Glu-C180 in the context of the “E-pathway hypothesis” is provided by the effects of replacing Glu-C180 with Gln or Ile by site-directed mutagenesis, the consequences of these mutations for the viability of the resulting mutants, together with the structural and functional characterisation of the corresponding variant enzymes, and the comparison of redox-induced Fourier-transform infrared (FTIR) difference spectra for the wild type and Glu-C180 → Gln variant. A possible haem propionate involvement has recently been supported by combining 13C-haem propionate labelling with redox-induced FTIR difference spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号