首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salivary glands contain two major epithelial cell types: acinar cells which produce the primary salivary secretion, including amylase, and ductal cells which reabsorb electrolytes but also secrete kallikrein. Here we investigated salivary acinar cell differentiation in vitro using the activity of the salivary amylase and tissue kallikrein promoters as markers of acinar cell and ductal cell differentiation, respectively. Each of the promoter sequences was cloned into a replication-deficient adenoviral vector containing the luciferase reporter gene. Previous studies showed that a human submandibular gland cell line (HSG) differentiated into acinar cells when cultured on a reconstituted basement membrane matrix (Matrigel). The luciferase activity of the amylase promoter vector (AdAMY-luc) was low in HSG cells cultured on plastic, where they grow as an epithelial monolayer. The promoter activity increased approximately tenfold when HSG cells were cultured on Matrigel and developed an acinar phenotype. Under the same conditions, the luciferase activity of the kallikrein promoter (AdKALL-luc) was not induced. Because HSG cells demonstrate acinar cell morphology, but not amylase gene expression, when cultured on laminin-1, certain soluble components of Matrigel were tested for their ability to induce the amylase promoter during in vitro differentiation of acinar cells. We find that epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), which are present in the basement membrane, and hepatocyte growth factor (HGF) increase activity of the amylase promoter. Other basement membrane-derived growth factors such as TGF-beta, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PGDF), as well as tumor necrosis factor (TNF-alpha), keratinocyte growth factor (KGH), nerve growth factor (NGF) and interferon gamma (IFN-gamma) were inactive. This system will be further exploited to study the mechanisms by which extracellular matrix molecules and growth factors regulate salivary acinar cell differentiation.  相似文献   

2.
3.
Tissue stem cells participate in the repopulation of tissue after injury. Tissue injury stimulates the normally quiescent tissue stem cells to differentiate and proliferate, in the process of replacing and/or repairing the damaged cells, and hence effecting tissue regeneration. The salivary glands retain the ability for frequent regeneration. Previously, we isolated progenitor cells from the injured salivary glands of mice and rats that differentiated into hepatic and pancreatic lineages. The isolated progenitors were CD49f-positive and intracellular laminin-positive, and proliferated on type I collagen while maintaining their multipotency. In this study, we analyzed the tissue stem cells induced by ligating the main excretory duct of the salivary gland in swine. After duct ligation of the gland, acinar cells receded due to apoptosis, and epithelial cells subsequently proliferated. We cultured cells obtained from the duct-ligated salivary gland and purified the cells by limited dilution. The isolated cells were positive for CD29, CD49f, intracellular laminin, AFP, CK19, CK18, and Thy-1(CD90), and weakly positive for c-Kit (CD117). After three-dimensional formation, the cells expressed insulin and albumin. We designated the cells as swine salivary gland-derived progenitor cells. Gene expression of insulin and albumin was significantly increased (five-fold) and that of insulin was also increased (3.8-fold) with differentiation medium with nicotinamide and/or GLP-1 treatment in spherical culture. The expressions of albumin and insulin were 1/10-fold and 1/4-fold compared to porcine hepatocytes and pancreatic endocrine cells. The differentiated SGP cells could release insulin, which were stimulated by glucose and potassium. These results indicate that swine SGP cells could differentiate into hepatocytes and beta-cells, functionally. Swine SGP cells were useful tools for therapy and analyzing endodermal regenerative models in large animals.  相似文献   

4.
Salivary gland neoplasms exhibit complex histopathology in a variety of tumor types and treatment options depend largely on the stage of the cancer. Induced pluripotent stem cells (iPS) have been investigated for treating induced salivary gland cancer and for restoring salivary gland function. We investigated iPS treatment for salivary gland cancer both in vitro and in vivo. For our study in vitro, we re-programmed human skin fibroblasts to form iPS cells using a plasmid containing Oct4, Sox2, L-MYC and LIN28. For our study in vivo, we used 30 white male albino rats divided into the following groups of 10: group 1 (control): rats were injected with phosphate-buffered saline (PBS), group 2 induced squamous cell carcinoma (SCC): rat submandibular glands were injected with squamous carcinoma cells (SCC), group 3 (induced SCC/iPS): SCC treated rats treated with 5 × 106 iPS cells. Submandibular glands from rats of all groups were examined histologically and real time PCR was performed for amylase, and COX I and COX II gene expression. We confirmed that submandibular gland specimens included tumor tissue before starting treatment with iPS. iPS treated cases exhibited regeneration of salivary glands, although minor degenerative and vascularization changes remained. The acinar cells regained their proper organization, but continued to exhibit abnormal activity including hyperchromatism. iPS cells may be useful for treating salivary gland carcinomas.  相似文献   

5.
Despite a recent breakthrough in human islet transplantation for treating diabetes mellitus, the limited availability of insulin-producing tissue is still a major obstacle. Here, we studied whether adult pancreatic acinar cells have the potential to transdifferentiate into islet or beta cells. Pancreatic acini were isolated from 7- to 8-weeks-old male Sprague-Dawley rats and cultured in suspension. Within 1 week, most of the acinar cells lost amylase expression and converted to cells with a duct cell phenotype. Insulin-positive cells were also observed, mainly at the periphery of the acini-derived spheroids. Insulin gene and protein expression was increased. Presence of a few insulin-positive cells coexpressing cytokeratins suggests that a spontaneous acinar to ductal cell transdifferentiation process was further going on towards beta cells. This study provides the first evidence that adult pancreatic acinar cells could be differentiated into insulin-expressing cells in vitro.  相似文献   

6.
Applying tissue engineering principles to design an auto-secretory device is a potential solution for patients suffering loss of salivary gland function. However, the largest challenge in implementing this solution is the primary culture of human salivary gland cells, because the cells are highly differentiated and difficult to expand in vitro. This situation leads to the lack of reports on the in vitro cell biology and physiology of human salivary gland cells. This study used a low-calcium culture system to selectively cultivate human parotid gland acinar (PGAC) cells from tissues with high purity in cell composition. This condition enables PGAC cells to continuously proliferate and retain the phenotypes of epithelial acinar cells to express secreting products (α-amylase) and function-related proteins (aquaporin-3, aquaporin-5, and ZO-1). Notably, when the cells reached confluence, three-dimensional (3D) cell aggregates were observed in crowded regions. These self-formed cell spheres were termed post-confluence structures (PCSs). Unexpectedly, despite being cultured in the same media, cells in PCSs exhibited higher expression levels and different expression patterns of function-related proteins compared to the two-dimensional (2D) cells. Translocation of aquoporin-3 from cytosolic to alongside the cell boundaries, and of ZO-1 molecules to the boundary of the PCSs were also observed. These observations suggest that when PGAC cells cultured on the 2D substrate would form PCSs without the help of 3D scaffolds and retain certain differentiation and polarity. This phenomenon implies that it is possible to introduce 2D substrates instead of 3D scaffolds into artificial salivary gland tissue engineering.  相似文献   

7.
Abstract. Culture of the human neoplastic submandibular gland intercalated duct cell line, HSG, on the basement membrane extract Matrigel induces dramatic morphologic changes and cytodifferentiation. Transmission electron microscopy demonstrated an acinar cell phenotype with polarized cells containing a well-developed Golgi apparatus, multiple microvilli-like projections from the apical surfaces into a lumenal-like area, and numerous granule-like organelles. Amylase, an acinar cell marker, was detected by both immunocytochemical and Northern blot analyses. A 50% reduction in [3H]thymidine incorporation by cells cultured on Matrigel, as compared to cells cultured on tissue culture plates, confirmed the differentiated phenotype of the cells. Multiple components of Matrigel appear to contribute to the morphologic differentiation of the HSG cells since antibodies to both laminin and collagen IV, as well as the lamininderived bioactive peptide containing SIKVAV, have potent inhibitory effects on HSG cell organization on Matrigel. Collectively, these data indicate that culture of HSG cells on Matrigel is a useful model to study salivary gland acinar development.  相似文献   

8.
Summary Antibodies against murine submandibular and sublingual mucins have been raised in rabbits. Both antisera appeared to be specific. Using these antibodies, the mucins were localized in the acinar cells of the submandibular and sublingual glands respectively.The dyed amylopectin method was used to estimate the activity of amylase in the salivary glands. The enzyme was localized either by a starch-substrate film method or with antibodies against purified parotid amylase. The activity of amylase in parotid homogenates is about 1000-fold higher than that in homogenates of either submandibular or sublingual glands, in which the activity was comparable. Amylase was localized in the acinar cells of the parotid gland with both localization techniques. In the sublingual gland, amylase was found predominantly in the stroma around the acini, and there was some evidence that amylase was present in the demilune cells as well. In the submandibular gland, contradictory results were obtained with both techniques. With the starch-substrate film method, amylase activity was found in the granular convoluted tubular cells, whereas immuno-reactive amylase could only be demonstrated in the acinar cells of this gland. It is concluded that in the submandibular gland amylase and mucin are present in the same cell type.  相似文献   

9.
Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues.  相似文献   

10.
11.
12.
13.
目的:研究小鼠下颌下腺细胞的培养方法,探讨下颌下腺细胞培养条件及细胞生长特性,为研究干细胞转分化涎腺腺泡细胞以及涎腺再生研究奠定理论基础和技术支持。方法:取2周龄的小鼠,组织块法和消化法分别进行培养,用活细胞观察法和HE染色法记录细胞形态学特征;免疫荧光染色法鉴定;通过生长曲线和细胞倍增时间来比较两种方法对细胞增殖能力的影响。结果:组织块法和消化法均可以成功的培养下颌下腺细胞,(1)组织块法培养的细胞呈卵圆形或多边形,10天左右成铺路石样;消化法培养细胞亦为上皮样细胞,呈多边形,胞质丰富;(2)HE染色下颌下腺细胞呈多边形,胞核明显;(3)Cytokeratin13和AQP5表达阳性,Wimentin表达阴性;(4)组织块法培养细胞增殖相对较平缓,消化法培养细胞增长较迅速;(5)消化法培养倍增时间(1.3471±0.6071)天比组织块法倍增时间(2.1887±1.1503)明显缩短(P〈0.05);结论:体外可以成功的培养下颌下腺细胞,但是同时证明下颌下腺细胞长期传代较困难,这为研究干细胞转分化涎腺细胞和涎腺再生体内实验提供了理论和实验基础。  相似文献   

14.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

15.
16.
Primary cultures of rat pancreatic acinar cells in serum-free medium   总被引:5,自引:0,他引:5  
Summary Rat pancreatic acinar cells were isolated and cultured in Ham's F12 medium with 15% bovine calf serum. Caerulein, insulin, somatostatin, and dexamethasone (DEX) had no effect on intracellular or secreted amylase in these cultured cells. A serum-free medium, using Waymouth's MB 752/1 supplemented with albumin, epidermal growth factor (EGF), DEX, and HEPES, was then developed to avoid serum factors that might mask hormonal effects. In this SF medium, pancreatic acinar, cells maintained the morphological and ultrastructural characteristics of freshly isolated cells and secreted amylase in response to the secretagogue, carbamyl choline. Insulin, at a concentration of 1 μg/ml, significantly increased intracellular and secreted amylase activity after 3 d. This model cell system can be used to study the regulation of the synthesis of amylase and other pancreatic enzymes in vitro.  相似文献   

17.
Summary To study the regulation of human salivary-type gene expression we developed cell culture systems to support the growth and serial cultivation of salivary gland epithelial and fibroblastic cell types. We have established 22 independent salivary gland epithelial cell strains from parotid or submandibular glands of human or macaque origin. Nineteen strains were derived from normal tissues and three from human parotid gland tumors. Both the normal and the tumor-derived salivary gland epithelial cells could be serially cultivated with the aid of a 3T3 fibroblast feeder layer in a mixture of Ham’s F12 and Dulbecco’s modified Eagle’s media supplemented with fetal bovine serum, calcium, cholera toxin, hydrocortisone, insulin, and epidermal growth factor. Salivary gland epithelial cells cultured under these conditions continued to express the genes for at least two acinar-cell-specific markers at early passages. Amylase enzyme activity was detected in conditioned media from cultured rhesus parotid epithelial cells as late as Passage 5. Proline-rich-protein-specific RNAs were detected in primary cultures of both rhesus and human parotid epithelial cells. Neither amylase enzyme activity nor PRP-specific RNAs were detected in fibroblasts isolated from the same tissues. In addition, salivary gland epithelial cells cultured under our conditions retain the capacity to undergo dramatic morphologic changes in response to different substrata. The cultured salivary gland epithelial cells we have established will be important tools for the study of salivary gland differentiation and the tissue-specific regulation of salivary-type gene expression.  相似文献   

18.
Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD=+/-7.02)h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2+/-4.18 vs. 4.5+/-1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands.  相似文献   

19.
Summary We have successfully maintained and biochemically characterized differentiated rat parotid acinar cells cultured for long periods (6 mo.). The cells were cultured on a reconstituted basement membrane matrix in a medium containing a variety of agents that promote cellular proliferation and differentiation. The cultured cells retain the characteristics of the parental parotid acinar cells. They exhibit both secretory granules and abundant cellular organelles required for protein synthesis and secretion. In situ hybridization and immunocytochemistry demonstrate high levels of proline-rich protein mRNA and protein, and lower levels of amylase mRNA and protein, in their cytoplasm. These findings suggest that rat parotid acinar cells can be maintained in a differentiated state in vitro for long periods, and can serve as a useful model system for studying the regulation of exocrine secretory processes.  相似文献   

20.
小鼠胚胎神经干细胞的分离培养及其鉴定   总被引:4,自引:2,他引:2  
且的探索小鼠胚胎神经干细胞的体外培养方法,并获取高纯度的神经干细胞,为神经干细胞的深入研究提供实验材料。方法无菌条件下分离E15天小鼠胚脑皮质,制成单细胞悬液,在bFGF和B27存在的培养基中培养扩增,通过免疫细胞化学染色鉴定神经干细胞及其子代细胞的分化方向。结果培养的部分细胞在B27和bFGF存在的无血清培养基中可以在体外分裂增殖,同时表达神经干细胞特异性抗原nestin,并在撤出B27和bFGF的有血清培养基中向神经细胞和胶质细胞分化。结论小鼠胚脑皮质存在具有多向分化潜能的神经干细胞,这些细胞可以在体外稳定培养、传代并自然分化,为细胞替代治疗提供了理想的细胞来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号