首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviors. Given the complexity of the nervous system in higher vertebrates this is a daunting task. Nevertheless, recent advances in developmental genetics hold out hope that studies of locomotor and respiratory circuits will provide general insight for understanding how ensembles of neurons are wired to control specific behaviors.  相似文献   

2.
Neural circuits underlying complex learned behaviors, such as speech in humans, develop under genetic constraints and in response to environmental influences. Little is known about the rules and mechanisms through which such circuits form. We argue that songbirds, with their discrete and well studied neural pathways underlying a complex and naturally learned behavior, provide a powerful model for addressing these questions. We briefly review current knowledge of how the song circuit develops during learning and discuss new possibilities for advancing the field given recent technological advances.  相似文献   

3.
How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.  相似文献   

4.
Development of central pattern generating circuits   总被引:2,自引:0,他引:2  
  相似文献   

5.
A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.  相似文献   

6.
Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits.  相似文献   

7.
Major technical advances in the imaging of live cells have led to a recent flurry of studies demonstrating how dendrites remodel dynamically during development. Taken together with our current understanding of axonal development, these studies help provide a more unified picture of how neural circuits might be formed altered or maintained throughout life.  相似文献   

8.
During nervous system development, axons generate branches to connect with multiple synaptic targets. As with axon growth and guidance, axon branching is tightly controlled in order to establish functional neural circuits, yet the mechanisms that regulate this important process are less well understood. Here, we review recent advances in the study of several common branching processes in the vertebrate nervous system. By focusing on each step in these processes we illustrate how different types of branching are regulated by extracellular cues and neural activity, and highlight some common principles that underlie the establishment of complex neural circuits in vertebrate development.  相似文献   

9.
A fundamental but unsolved problem in neuroscience is how connections between neurons might underlie information processing in central circuits. Building wiring diagrams of neural networks may accelerate our understanding of how they compute. But even if we had wiring diagrams, it is critical to know what neurons in a circuit are doing: their physiology. In both the retina and cerebral cortex, a great deal is known about topographic specificity, such as lamination and cell-type specificity of connections. Little, however, is known about connections as they relate to function. Here, we review how advances in functional imaging and electron microscopy have recently allowed the examination of relationships between sensory physiology and synaptic connections in cortical and retinal circuits.  相似文献   

10.
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.  相似文献   

11.
Recent advances in sensory neuroscience using Drosophila olfaction as a model system have revealed brain maps representing the external world. Once we understand how the brain’s built-in capability generates the internal olfactory maps, we can then elaborate how the brain computes and makes decision to elicit complex behaviors. Here, we review current progress in mapping Drosophila olfactory circuits and discuss their relationships with innate olfactory behaviors. Hui-Hao lin and Chih-Yung Lin contributed equally to this work.  相似文献   

12.
The brain's evolution and operation are inextricably linked to animal movement, and critical functions, such as motor control, spatial perception, and navigation, rely on precise knowledge of body movement. Such internal estimates of self-motion emerge from the integration of mechanosensory and visual feedback with motor-related signals. Thus, this internal representation likely depends on the activity of circuits distributed across the central nervous system. However, the circuits responsible for self-motion estimation, and the exact mechanisms by which motor-sensory coordination occurs within these circuits remain poorly understood. Recent technological advances have positioned Drosophila melanogaster as an advantageous model for investigating the emergence, maintenance, and utilization of self-motion representations during naturalistic walking behaviors. In this review, I will illustrate how the adult fly is providing insights into the fundamental problems of self-motion computations and walking control, which have relevance for all animals.  相似文献   

13.
Germain RN 《FEBS letters》2010,584(24):4814-5045
Signaling through the T cell receptor for antigen (TCR) has been studied for years by conventional biochemical means. More recently, attempts have been made to develop computational models of signaling through this receptor, with a specific focus on understanding how this recognition system discriminates between closely related (self and non-self) ligands. Here we discuss recent advances centered on the role of feedback regulation, especially the key finding that a combination of digital and analog control circuits is fundamental to the discrimination properties of the TCR. We end by pointing to future, more biologically accurate models that incorporate spatial aspects of molecular organization in antigen-engaged T lymphocytes with this underlying biochemistry.  相似文献   

14.
The study of plasticity in the central nervous system is a major and very dynamic neuroscience research field with enormous clinical potential. Considerable advances in this field have been made during the past 10 years. It now appears that most circuits in the brain and spinal cord show plasticity and that they can be modified by experience. Knowledge of the mechanisms of plasticity in the nervous system is therefore essential for the understanding of how the nervous system is wired during development and how it adapts in response to changes in the body and environment. Recent findings indicate that functional sensorimotor modules probe the sensory signals from the body that are generated as a consequence of module specific activity and use this sensory feedback to calibrate the strength in its input-output connections. This experience-dependent signal adapts the circuitry in the sensorimotor module to the body anatomy and biomechanics.  相似文献   

15.
Insects can perform impressive feats of navigation, suggesting a sophisticated sense of direction and an ability to choose appropriate trajectories toward ethological goals. The hypothesized substrate for these navigational abilities is the central complex (CX), a midline brain structure with orderly topology. The circuit transformations performed by the CX are now being concretely described by recent advances in the study of fruit fly neural circuits. An emerging theme is dynamic representation of navigational variables (e.g. heading or travel direction) computed in a manner distributed across specific neuronal populations. These representations are shaped by multimodal inputs whose weights evolve rapidly as surroundings change. Investigation of CX circuits is revealing with precise detail how structured wiring and synaptic plasticity enable neural circuits to flexibly subsample from the currently available sensory and motor cues to build a stable and accurate map of space. Given the sensory richness of natural environments, these findings are encouraging insect neuroscientists to no longer ask which cues insects use to navigate, but instead which cues can insects use, and under which contexts.  相似文献   

16.
《Fly》2013,7(3):209-211
A central goal of systems neuroscience is to understand how neural circuits represent quantitative aspects of the outside world and transform these signals into the motor code for behavior. By contrast to olfactory perception in which odors are encoded by a population of ligand-binding receptors at the input stage, the visual system extracts complex information about color, form and movement from just a few types of photoreceptor inputs. The algorithms for many of these transformations are poorly understood. We designed a high throughput real-time quantitative testing system, the "fly-stampede", to evaluate behavioral responses to light and motion cues in Drosophila. With this system, we identified a neural circuit that does not participate in sensing light but is crucial for computing visual motion. When neurons of this circuit are genetically inactivated, the flies show normal walking phototaxis, but are completely motion blind. Using neurogenetics to study the circuits mediating sophisticated animal behaviors is currently a field of intense study. This extra view attempts to summarize our work within historical background of fly biocybernetics and other recent advances.  相似文献   

17.
Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.  相似文献   

18.
Miwa JM  Freedman R  Lester HA 《Neuron》2011,70(1):20-33
Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson's disease, cognitive decline, epilepsy, and schizophrenia.  相似文献   

19.
'Anticipatory affect' refers to emotional states that people experience while anticipating significant outcomes. Historically, technical limitations have made it difficult to determine whether anticipatory affect influences subsequent choice. Recent advances in the spatio-temporal resolution of functional magnetic resonance imaging, however, now allow researchers to visualize changes in neural activity seconds before choice occurs. We review evidence that activation in specific brain circuits changes during anticipation of monetary incentives, that this activation correlates with affective experience and that activity in these circuits may influence subsequent choice. Specifically, an activation likelihood estimate meta-analysis of cued response studies indicates that nucleus accumbens (NAcc) activation increases during gain anticipation relative to loss anticipation, while anterior insula activation increases during both loss and gain anticipation. Additionally, anticipatory NAcc activation correlates with self-reported positive arousal, whereas anterior insula activation correlates with both self-reported negative and positive arousal. Finally, NAcc activation precedes the purchase of desirable products and choice of high-risk gambles, whereas anterior insula activation precedes the rejection of overpriced products and choice of low-risk gambles. Together, these findings support a neurally plausible framework for understanding how anticipatory affect can influence choice.  相似文献   

20.
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号