首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the rates of overall chain elongation and condensation of malonyl-CoA with palmitoyl-CoA and stearoyl-CoA as primers demonstrated that for each primer, the rate of the overall metabolic process was similar to the initial condensation. The specific activity for condensation with palmitoyl-CoA was eleven times greater than for stearoyl-CoA. The specific activities of both the beta-hydroxyacyl-CoA dehydrase and 2-trans-enoyl-CoA reductase reactions were much higher than for either condensation or chain elongation, although these rates were somewhat greater with the intermediates required in chain elongating palmitoyl-CoA than for stearoyl-CoA. Both substrates were incorporated into phospholipids at low rates and there was a time-dependent hydrolytic cleavage of the acyl-CoA primers which was partially prevented by bovine serum albumin. These findings demonstrate that there was no selective removal of either primer which could result in specific substrate depletion and an apparent reduction in the rate of condensation. These combined results firmly establish the rate-limiting nature and high degree of substrate specificity exhibited during the initial condensation step in fatty acid elongation.  相似文献   

2.
1. NADPH-specific mitochondrial enoyl-CoA reductase can be assayed by a sensitive radioactive test, employing tritium-labelled NADPH, synthesized in a prefixed reaction from D-[1-3H]-glucose via the hexokinase and glucose-6-phosphate dehydrogenase reactions. 2. Liver, kidney cortex, heart muscle, skeletal muscle, brown adipose tissue, brain cortex, and aortic intimal tissue are investigated concerning chain lengths specificity of the chain elongation and the enoyl-CoA reductase. Medium-chain acyl-CoA compounds prove to be the best primers for the chain elongation. Enoyl-CoA reductases still show large incorporation rates with hexadecenoyl-CoA. 3. The differences in the chain lengths specificity of the chain elongation and enoyl-CoA reductase can be explained by the inhibitory effect of long-chain acyl-CoA derivatives on the 3-hydroxyacyl-CoA dehydrogenase. 4. The nucleotide specificity in the different tissues reveals two types of chain elongation: In addition to liver and kidney cortex, mitochondria of brown adipose tissue need NADH + NADPH for optimal chain elongation, whereas heart muscle, skeletal muscle and aortic intimal mitochondria only need NADH. 5. Different physiological roles are proposed for the two types. The "heart type" may be of importance in the conservation of reducing equivalents or acetate units in the anaerobic state, the "liver type" may play a role in the transfer of hydrogen from NADPH to the respiratory chain. In addition, the mitochondrial chain elongation may serve as bypass of the first part of the respiratory chain.  相似文献   

3.
The present study examines the effect of the acetylenic thioester dec-2-ynoyl-CoA (delta 2 10 identical to 1-CoA) on the microsomal fatty acid chain elongation pathway in rat liver. When the individual reactions of the elongation system were measured in the presence of delta 2 10 identical to 1-CoA, the trans-2-enoyl-CoA reductase activity was markedly inhibited (Ki = 2.5 microM), whereas the activities of the condensing enzyme, the beta-ketoacyl-CoA reductase, and the beta-hydroxyacyl-CoA dehydrase were not affected. The absence of inhibition of total microsomal fatty acid elongation was attributed to the significant accumulation of the intermediates, beta-hydroxyacyl-CoA and trans-2-enoyl-CoA, without formation of the saturated elongated product, indicating that the trans-2-enoyl-CoA reductase-catalyzed reaction was the only site affected by the inhibitor. The nature of the inhibition was noncompetitive. In contrast to the delta 2 10 identical to 1-CoA, delta 3 10 identical to 1-CoA did not inhibit trans-2-enoyl-CoA reductase activity, suggesting that the mode of inhibition was not via formation of the 2,3-allene derivative. Based on the observation (a) that p-chloromercuribenzoate markedly inhibits reductase activity, (b) that dithiothreitol protects the enzyme against inactivation by delta 2 10 identical to 1-CoA, (c) of the spectral manifestation of the interaction between thiol reagents and delta 2 10 identical to 1-CoA depicting an absorbance peak similar to that of the beta-ketoacyl thioester-Mg2+ enolate complex, (d) of a similar absorbance spectrum formed by the interaction between delta 2 10 identical to 1-CoA and liver microsomes, and (e) of the absence of formation of a similar spectrum by delta 3 10 identical to 1-CoA, trans-2-10:1-CoA, or delta 2 10 identical to 1 free acid with liver microsomes, we propose that delta 2 10 identical to 1-CoA inactivates trans-2-enoyl-CoA reductase by covalently binding to a critical sulfhydryl group at or in close proximity to the active site of the enzyme.  相似文献   

4.
The orientation of the condensing enzyme, the beta-hydroxyacyl-CoA dehydrase, and the trans-2-enoyl CoA reductase within the rat liver microsomal membrane was investigated by the use of impermeant inhibitors of enzyme activity: trypsin, chymotrypsin, subtilisin, mercury-dextran, and anti-beta-hydroxyacyl-CoA dehydrase IgG. The activity of the condensing enzyme was inhibited more than 70% by various proteases and was completely inhibited by 80 microM mercury-dextran. Similar results were obtained for the trans-2-enoyl-CoA reductase activity. On the other hand, in the absence of detergent, proteases inhibited beta-hydroxyacyl-CoA dehydrase activity by 25-40%, while in the presence of detergent the inhibition increased to 65-90%. Furthermore, anti-beta-hydroxyacyl-CoA dehydrase IgG, which in the absence of detergent produced no inhibition, in the presence of detergent inhibited beta-hydroxyacyl-CoA dehydrase activity by more than 80%; under identical conditions, preimmune IgG caused a 13% inhibition. Microsomes used throughout this study displayed greater than 90% latency with respect to mannose-6-phosphatase activity, indicating that the microsomes were intact. Latency was not affected by the proteases, by mercury-dextran, or by the presence of the enzyme assay components. These results suggest that both the condensing enzyme and the reductase are present on the cytoplasmic surface of the membrane, whereas the beta-hydroxyacyl-CoA dehydrase is embedded in the microsomal membrane.  相似文献   

5.
The ability of 0.4 M KCl to extract over 80% of a short-chain beta-hydroxyacyl-CoA dehydrase from rat hepatic endoplasmic reticulum, while more than 80% of the long-chain beta-hydroxyacyl-CoA dehydrase component of the fatty acid chain elongation system remains intact, confirms the existence of more than one hepatic microsomal dehydrase. Following extraction from the microsomal membrane, the short-chain dehydrase undergoes, at least, a two-fold activation. Employing even-numbered trans-2-enoyl-CoA substrates ranging in carbon chain length from 4 to 16, the highest dehydrase specific activity of 16 mumol min-1 mg protein-1 was obtained with trans-2-hexenoyl-CoA; crotonyl-CoA was the second most active substrate, followed by 8 greater than 10 greater than 12 greater than 14 greater than 16. The specific activity of the short-chain dehydrase with trans-2-hexadecenoyl-CoA (C-16) was only 3% of that observed with the trans-2-hexenoyl-CoA. With crotonyl-CoA or beta-hydroxybutyryl-CoA as substrates, HPLC was employed to identify the products, beta-hydroxybutyryl-CoA, of the hydration reaction, or crotonyl-CoA, of the reverse dehydration reaction. It was also observed that the short-chain dehydrase catalyzed the formation of both D(-) and L(+) stereoisomers of beta-hydroxybutyryl-CoA. The equilibrium constant for the dehydrase-catalyzed reaction determined at pH 7.4 and 35 degrees C, was calculated to be 6.38 X 10(-2) M-1, while the standard free energy change was -775 cal/mol, results similar to those obtained with crystalline crotonase. Finally, based on membrane fraction marker enzymes, substrate specificity, and heat lability of the dehydrase, it was concluded that the microsomal membrane contains a short-chain beta-hydroxyacyl-CoA dehydrase which is separate from the mitochondrial crotonase.  相似文献   

6.
Witkowski A  Joshi AK  Smith S 《Biochemistry》2004,43(32):10458-10466
The properties of the beta-ketoacyl reductase, dehydrase, and enoyl reductase components of the animal fatty acid synthase responsible for the reduction of the beta-ketoacyl moiety formed at each round of chain elongation have been studied by engineering and characterizing mutants defective in each of these three catalytic domains. These "beta-carbon processing" mutants leak the stalled four-carbon intermediates by direct transfer to CoA. However, enoyl reductase mutants leak beta-ketobutyryl, beta-hydroxybutyryl, and crotonyl moieties, a finding explained, at least in part, by the observation that the equilibrium and rate constant for the dehydrase reaction favor the formation of beta-hydroxy rather than enoyl moieties. In this regard, the type I animal fatty acid synthase resembles its type II counterpart in Escherichia coli in that both systems rely on the enoyl reductase to pull the beta-carbon processing reactions to completion. Kinetic and nucleotide binding measurements on fatty acid synthases mutated in either of the two nucleotide binding domains revealed that the NADPH binding sites are nonidentical, the enoyl reductase exhibiting higher affinity. Surprisingly, NADPH binding is also completely compromised by certain deletions and mutations in the central core region distant from the nucleotide binding sites. Comparable central core sequences are present in the structurally related modular polyketide synthases, except in those modules that lack all three beta-carbon processing enzymes. These findings suggest that the central core region of fatty acid and polyketide synthases plays an important role in facilitating the beta-carbon processing reactions.  相似文献   

7.
β-Ketoacyl-[acyl-carrier-protein] (ACP) reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase have been purified to homogeneity from extracts of spinach leaves. Based on sodium dodecyl sulfate-polyacrylamide gel eletrophoresis studies, the monomeric molecular weights of the β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase were 24,200, 19,000, and 32,500, respectively, and by gel filtration, their molecular weights were 97,000, 85,000, and 115,000, respectively, suggesting that these three enzymes exist as tetramers. The β-ketoacyl-ACP reductase, the β-hydroxyacyl-ACP dehydrase, and the enoyl-ACP reductase contained two, one, and two cystein residues per monomer. β-Ketoacyl-ACP reductase preferably utilized NADPH as the reductant, whereas enoyl-ACP reductase was absolutely specific to NADH. β-Ketoacyl-ACP reductase reversibly catalyzed the reduction of acetoacetyl-ACP to d-β-hydroxybutyryl-ACP and β-hydroxyacyl-ACP dehydrase catalyzed the dehydration of d-β-hydroxyacyl-ACP to 2-enoyl-ACP. Both β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were active with 2-enoyl-ACPs having chain lengths from C4 to C16, with 2-hexenoyl-ACP and 2-octenoyl-ACP being the most effective substrate. CoA esters served as substrates with the β-ketoacyl-ACP reductase and the enoyl-ACP reductase but were inert with β-hydroxyacyl-ACP dehydrase. These enzymes were inhibited by p-chloromercuribenzoate but not by N-ethylmaleimide.  相似文献   

8.
The degradation of unsaturated fatty acids by beta-oxidation involves Delta(3),Delta(2)-enoyl-CoA isomerases (enoyl-CoA isomerases) that catalyze 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of enoyl-CoAs and the 2,5 --> 3,5 isomerization of dienoyl-CoAs. An analysis of rat liver enoyl-CoA isomerases revealed the presence of a monofunctional enoyl-CoA isomerase (ECI) in addition to mitochondrial enoyl-CoA isomerase (MECI) in mitochondria, whereas peroxisomes contain ECI and multifunctional enzyme 1 (MFE1). Thus ECI, which previously had been described as peroxisomal enoyl-CoA isomerase, was found to be present in both peroxisomes and mitochondria. This enzyme seems to be identical with mitochondrial long-chain enoyl-CoA isomerase (Kilponen, J.M., Palosaari, P.M., and Hiltunen, J.K. 1990. Biochem. J. 269, 223-226). All three hepatic enoyl-CoA isomerases have broad chain length specificities but are distinguishable by their preferences for one of the three isomerization reactions. MECI is most active in catalyzing the 3-cis --> 2-trans isomerization; ECI has a preference for the 3-trans --> 2-trans isomerization, and MFE1 is the optimal isomerase for the 2,5 --> 3,5 isomerization. A functional characterization based on substrate specificities and total enoyl-CoA isomerase activities in rat liver leads to the conclusion that the 3-cis --> 2-trans and 2,5 --> 3,5 isomerizations in mitochondria are catalyzed overwhelmingly by MECI, whereas ECI contributes significantly to the 3-trans --> 2-trans isomerization. In peroxisomes, ECI is predicted to be the dominant enzyme for the 3-cis --> 2-trans and 3-trans --> 2-trans isomerizations of long-chain intermediates, whereas MFE1 is the key enzyme in the 2,5 --> 3,5 isomerization.  相似文献   

9.
Using long-chain fatty acyl CoAs (arachidoyl CoA and behenoyl CoA), a decrease in overall fatty acid chain elongation activity was observed in the quaking and jimpy mouse brain microsomes relative to controls. Arachidoyl CoA (20:0) and behenoyl CoA (22:0) elongation activities were depressed to about 50% and 80% of control values in quaking and jimpy mice, respectively. Measurement of the individual enzymatic activities of the elongation system revealed a single deficiency in enzyme activity; only the condensation activity was reduced to the same extent as total elongation in both quaking and jimpy mice. The activities of the other three enzymes, beta-ketoacyl CoA reductase, beta-hydroxyacyl CoA dehydrase, and trans-2-enoyl CoA reductase, in both mutants were similar to the activities present in the control mouse. In addition, the activities of these three enzymes were more than two to three orders of magnitude greater than the condensing enzyme activity in all three groups, establishing that the condensing enzyme catalyzes the rate-limiting reaction step of total elongation. When the elongation of palmitoyl CoA was measured, only a 25% decrease in total elongation occurred in both mutants; a similar percent decrease in the condensation of palmitoyl CoA also was observed. The activities of the other three enzymes were unaffected. These results support the concept of either multiple elongation pathways or multiple condensing enzymes.  相似文献   

10.
The hepatic microsomal fatty acid chain elongation system can utilize either NADPH or NADH. Elongation activity, measured as the rate of malonyl CoA incorporation into palmitoyl CoA, was enhanced by a fat-free diet and by bovine serum albumin (BSA) when either cofactor was employed. When the intermediate products were determined, it was observed that in the presence of BSA and NADPH, the predominant product was the saturated elongated fatty acid, whereas in the presence of BSA and NADH, the major intermediate was the beta-ketoacyl derivative. Employing beta-ketostearoyl CoA as substrate, BSA markedly inhibited NADH-supported beta-ketoacyl CoA reductase activity and stimulated NADPH-supported activity. Furthermore, the sum of the NADH-dependent and NADPH-dependent beta-ketoreductase activities approximated the activity obtained when both cofactors were present in the incubation medium, suggesting the existence of two beta-ketoacyl CoA reductases, one using NADH and the other, NADPH.  相似文献   

11.
In the previous study, the organoselenium-containing anti-inflammatory agent, Ebselen, was found to disrupt both hepatic microsomal NADH- and NADPH-dependent electron transport chains. In the current investigation, we focus on the action of Ebselen on three separate metabolic reactions, namely, fatty acid chain elongation, desaturation, and drug biotransformation, which utilize reducing equivalents via these microsomal electron transport pathways. Both NADH-dependent and NADPH-dependent chain elongation reactions showed (i) that the condensation step was inhibited by Ebselen; all three substrates, palmitoyl CoA (16:0), palmitoleoyl CoA (16:1), and gamma-linolenyl CoA (18:3), were differentially affected by Ebselen; for example, the apparent Ki's of Ebselen for the condensation of 16:0, 16:1, and 18:3 in the absence of bovine serum albumin (BSA) preincubation were 7, 14, and 34 microM, and those in the presence of BSA preincubation were 35, 62, and 150 microM, respectively, supporting earlier data for multiple condensing enzymes; (ii) that the beta-ketoacyl CoA reductase-catalyzed reaction step which appears to receive electrons, at least in part, from the cytochrome b5 system, was also markedly inhibited by varying Ebselen concentrations; and (iii) that similar results were obtained with the dehydrase and the enoyl CoA reductase. Hence, each of the four component steps was significantly inhibited by Ebselen. Another important fatty acid biotransformation reaction, delta 9 desaturation of stearoyl CoA to oleoyl CoA, was significantly inhibited (90%) by 30 microM Ebselen. This effect appeared to be directly related to the NADH-dependent electron transport chain rather than to a direct action on the desaturase enzyme. Last, Ebselen also inhibited both aminopyrine and benzphetamine N-demethylations, two cytochrome P450-catalyzed reactions, in untreated rats, in rats on a high carbohydrate diet, and in phenobarbital-treated rats.  相似文献   

12.
[2-14C]-trans-2-hexadecenoyl CoA (16:1) and [2-14C]-trans-2-cis-8,11,14-eicosatetraenoyl CoA (20:4) were chemically synthesized and employed as competitive substrates for the liver microsomal trans-2-enoyl CoA reductase component of the fatty acid chain elongation system. Both 7.5 microM and 15 microM 20:4 competitively inhibited the reduction of 16:1 CoA to palmitoyl CoA. In addition, the reduction of both substrates was identically inhibited to the same extent by the acetylenic derivative, dec-2-ynoyl CoA. Furthermore, trypsin, chymotrypsin and subtilisin inhibited trans-2-enoyl CoA reductase activity when three different substrates were employed--16:1, 20:4 and trans-2-cis-11-octadecadienoyl CoA (18:2). These results are consistent with the hypothesis of multiple condensing enzymes connected to a single elongation pathway.  相似文献   

13.
The administration of di-(2-ethylhexyl)phthalate (DEHP)3 to male Sprague-Dawley rats resulted in more than a threefold increase in activity of acetyl CoA-dependent hepatic mitochondrial fatty acid elongation. Peroxisomes obtained either from control or DEHP-treated rats were not capable of elongating any of the fatty acyl CoAs tested. Furthermore, the peroxisomes possessed no trans-2-enoyl CoA reductase activity. Therefore, the elongation activity in the 7500g fraction from both control and DEHP-fed animals can be attributed totally to the mitochondria. Maximal incorporation of acetyl CoA occurred in the presence of both NADH and NADPH, and octanoyl CoA (8:0) and decanoyl CoA (10:0) were found to be optimal primers for fatty acid elongation in both control and DEHP-treated animals. The apparent Km for 8:0 CoA was 17 microM in both animal groups while the Vmax was increased from 4.5 to 12.5 nmol/min/mg following treatment. The apparent Km for 10:0 CoA was 10 microM in both control and DEHP-treated groups while the apparent Vmax increased from 2.5 to 10 nmol/min/mg; palmitoyl-CoA (16:0) was a very poor primer for chain elongation. Although the acetyl CoA-dependent fatty acid elongation was stimulated by DEHP treatment, the mitochondrial trans-2-enoyl CoA reductase activity was unaffected. The mitochondrial total elongation activity following DEHP-treatment using 8:0 CoA as primer was about two times higher than enoyl CoA reductase activity using trans-2-decenoyl CoA (10:1). This was the result of accumulation of intermediates, which were identified as trans-2-10:1 (35%), beta-hydroxy 10:0 (25%), unidentified (15%), and elongated saturated product 10:0 (24%). Elongation by one acetate unit was found in both the control and DEHP-treated animals. The results are discussed in terms of physiological significance.  相似文献   

14.
Rat brain microsomes actively dehydrate 3-hydroxyacyl-CoAs. Using chemically synthesized [1-(14)C] (R,S) 3-hydroxyeicosanoyl-CoA, we investigated the biochemical characteristics of the dehydration and reduction steps of stearoyl-CoA elongation. The reaction products, separated and identified as trans2,3-enoyl-CoAs and, in the presence of NADPH, as saturated acyl-CoAs, were released from the enzyme as thioesters which were partly hydrolysed. A kinetic analysis of the two coupled reactions showed that the 3-hydroxyacyl-CoA dehydrase catalysed a reversible reaction with kinetic constants of about 0.045 min(-1) for forward reaction (dehydration) and 0.025 min(-1) for reverse reaction (hydration); Vmax of the dehydration reached 20 nmoles/min/mg and the apparent Km was 44 microM. In the presence of NADPH, the kinetic constants for the dehydrase were unchanged and that for the trans2,3-enoyl-CoA reductase was 0.025 min(-1). The relative proportion of trans2,3-enoyl-CoA and saturated acyl-CoA depended on the protein amount. An inhibition of the reduction step was observed for substrate concentrations above 15 microM. The 3-hydroxyacyl-CoA dehydrase used (R) rather than (S) 3-hydroxyacyl-CoA. Furthermore, the elongation of (R) 3-hydroxyeicosanoyl-CoA yielded saturated very-long-chain acyl-CoA. These results demonstrated that 3-hydroxyacyl-CoAs entered the elongating complex exclusively at the level of the dehydrase and not of the condensing enzyme.  相似文献   

15.
Fatty acid synthesis in mitochondria of Euglena gracilis   总被引:2,自引:0,他引:2  
A malonyl-CoA-independent fatty acid synthetic system, different from the systems in other subcellular fractions, occurred in mitochondria of Euglena gracilis. The system had ability to synthesize fatty acids directly from acetyl-CoA as both primer and C2 donor using NADH as an electron donor. Fatty acids were synthesized by reversal of beta-oxidation with the exception that enoyl-CoA reductase functioned instead of acyl-CoA dehydrogenase in degradation system. A fairly high activity of enoyl-CoA reductase was found on various enoyl-CoA substrates (C4-C12) with NADH or NADPH. Three species of enoyl-CoA reductase, distinct from each other by their chain-length specificity, were found in Euglena mitochondria, and one of them was highly specific for crotonyl-CoA. It is also discussed that the mitochondrial fatty-acid synthetic system contributes to wax ester fermentation, the anaerobic energy-generating system found in the organism.  相似文献   

16.
The present study was designed to determine the action of the 2-acetylenic acid thioester on mitochondrial fatty acid chain elongation and beta-oxidation. Addition of 2-decynoyl CoA to a rat liver mitochondrial suspension resulted in a significant stimulation of the rate of oxidation of NADPH and NADH. This enhanced oxidation rate was not due to the mitochondrial trans-2-enoyl CoA reductase-catalyzed conversion of the 2-acetylenic acid thioester to the saturated product, decanoate, as measured by gas-liquid chromatography. On the contrary, the mitochondrial trans-2-enoyl CoA reductase activity was markedly inhibited by the 2-acetylenic acid derivative, as evidenced by the decrease in the reduction of trans-2-decenoyl CoA to decanoic acid. Incubation of the mitochondrial fraction with either NADPH or NADH and 2-decynol CoA resulted in the gas chromatographic identification of three products: beta-ketodecanoate, beta-hydroxydecanoate, and trans-2-decenoate. In the absence of reduced pyridine nucleotide, a single product was formed and identified as beta-ketodecanoate. Confirmation of the identity of this product was obtained by the observation of the formation of the Mg2+-enolate complex (303-nm absorbance peak). These results suggest that, although the 2-decynoyl CoA is an inhibitor of mitochondrial trans-2-enoyl CoA reductase activity, it is a substrate for the mitochondrial trans-2-enoyl CoA hydratase (crotonase). This was confirmed by incubation of 2-decynoyl CoA with commercially purified liver mitochondrial crotonase. The beta-ketodecanoate is formed in a two-step process: hydration of the 2-decynoyl CoA to an unstable enol intermediate which undergoes rearrangement to the beta-ketodecanoyl CoA. Interestingly, although the mitochondrial crotonase can utilize the 2-acetylenic acid thioesters, this was not the case for the peroxisomal bifunctional hydratase which was markedly inhibited by varying concentrations of 2-decynoyl CoA.  相似文献   

17.
This study describes the biochemical properties of the rat hepatic microsomal NADPH-specific short-chain enoyl CoA reductase and NAD(P)H-dependent long-chain enoyl CoA reductase. Of the substrates tested, crotonyl CoA and trans-2-hexenoyl CoA are reduced by the short-chain reductase only in the presence of NADPH. The trans-2-octenoyl CoA and trans-2-decenoyl CoA appear to undergo reduction to octanoate and decanoate, respectively, catalyzed by both enzymes; 64% conversion of the C8:1 is catalyzed by the short-chain reductase, while 36% conversion is catalyzed by the long-chain enzyme. For the C10:1 substrate, 45% is converted by the short-chain reductase, while 55% is reduced by the long-chain reductase. trans-2-Hexadecenoyl CoA is a substrate for the long-chain enoyl CoA reductase only. Reduction of C4 and C6 enoyl CoA's was unaffected by bovine serum albumin (BSA), whereas BSA markedly stimulated the conversion of C10 and C16 enoyl CoA's to their respective saturated product. Reduction rates as a function of microsomal protein concentration, incubation time, pH, and cofactors are reported including the apparent Km and Vmax for substrates and cofactors. In general, the apparent Km's for the substrates ranged from 19 to 125 microM. The apparent Vmax for the short-chain enoyl CoA reductase was greatest with trans-2-hexenoyl CoA, having a turnover of 65 nmol/min/mg microsomal protein, while the apparent Vmax for the long-chain enzyme was greatest with trans-2-hexadecenoyl CoA, having a turnover of 55 nmol/min/mg microsomal protein. With respect to electron input, NADPH-cytochrome P-450 reductase, either alone, mixed with phospholipid, or incorporated into phospholipid vesicles, possessed no enoyl CoA reductase activity. Cytochrome c did not affect the NADPH-dependent conversion of the trans-2-enoyl CoA. In addition, anti-NADPH-cytochrome P-450 reductase IgG did not inhibit the reduction of trans-2-hexadecenoyl CoA in hepatic microsomes. Finally, the NADPH-specific short-chain and NAD(P)H-dependent long-chain enoyl CoA reductases were solubilized and completely separated from NADPH-cytochrome P-450 reductase by employing DE-52 column chromatography. These studies demonstrate the noninvolvement of NADPH-cytochrome P-450 reductase in either the short-chain (13) or long-chain enoyl CoA reductase system. Thus, the role of NADPH-cytochrome P-450 reductase in the microsomal elongation of fatty acids appears to be at the level of the first reduction step.  相似文献   

18.
Escherichia coli 2,4-dienoyl-CoA reductase is an iron-sulfur flavoenzyme required for the metabolism of unsaturated fatty acids with double bonds at even carbon positions. The enzyme contains FMN, FAD, and a 4Fe-4S cluster and exhibits sequence homology to another iron-sulfur flavoprotein, trimethylamine dehydrogenase. It also requires NADPH as an electron source, resulting in reduction of the C4-C5 double bond of the acyl chain of the CoA thioester substrate. The structure presented here of a ternary complex of E. coli 2,4-dienoyl-CoA reductase with NADP+ and a fatty acyl-CoA substrate reveals a possible mechanism for substrate reduction and provides details of a plausible electron transfer mechanism involving both flavins and the iron-sulfur cluster. The reaction is initiated by hydride transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. In the final stages of the reaction, the fully reduced FMN provides a hydride ion to the C5 atom of substrate, and Tyr-166 and His-252 are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and complete the reaction. Inspection of the substrate binding pocket explains the relative promiscuity of the enzyme, catalyzing reduction of both 2-trans,4-cis- and 2-trans,4-trans-dienoyl-CoA thioesters.  相似文献   

19.
Previous studies have demonstrated that the in vitro activation of microsomal hepatic hydroxymethylglutaryl (HMG) CoA reductase by dephosphorylation is inhibited by HMG CoA or NADPH, the substrates of HMG CoA reductase (13). In the present study the effect of three competitive inhibitors of HMG CoA reductase on the activation of HMG CoA reductase was investigated. Adenosine-2'-monophospho-5'-diphosphoribose, a competitive inhibitor for the NADPH binding site, blocked the phosphatase-mediated activation of HMG CoA reductase. By contrast, neither compactin nor mevinolin, competitive inhibitors for the HMG CoA binding site, altered the activation of HMG CoA reductase. Moreover, the HMG CoA-mediated inhibition of the activation of HMG CoA reductase was not blocked even by very high concentrations of either compactin or mevinolin. These observations suggest that HMG CoA can bind to two sites on HMG CoA reductase. One site of HMG CoA binding serves as a catalytic site and is competitively blocked by compactin or mevinolin, and the second binding site is an allosteric site to which only HMG CoA is capable of binding. The binding of HMG CoA to this second site inhibits the activation of HMG CoA reductase by phosphatases.  相似文献   

20.
Close agreement between rates of condensation and overall chain elongation have been observed with eight octadecadienoic isomers in which the double bonds were moved from the 4,7- to the 11,14-positions. The specific activities for overall chain elongation of 7,10-and 6,9-octadecadienoic acids were, respectively, 5.20 and 2.89 nmol product min?1 mg?1 rat liver microsomal protein, while the specific activities for the other six isomers were all below 0.84. The specific activities for both the β-hydroxyacyl-CoA dehydrase and 2-trans-enoyl-CoA reductase reactions were measured using the appropriate substrates required in chain elongating 5,8-, 7,10-, and 8,11-octadecadienoic acids. Although these rates were not as markedly influenced by structural modification, they were all much greater than the initial reaction thus implicating condensation as rate limiting. Both 7- and 9-octadecenoic acids were poor substrates for overall chain elongation even though both 6,9- and 7,10-octadecadienoic acids readily condensed with malonyl-CoA. The rate of overall elongation increased for 7,10-unsaturated acids as the chain length of the primer was extended from 14- to 18-carbons, however, 7,10-eicosadienoic acid was virtually inactive. When rates of overall chain elongation were measured with an isomeric series of six octadecatrienoic acids in which the double bonds were shifted from the 4,7,10- to the 9,12,15-positions, only the 5,8,11-, 6,9,12-, and 7,10,13-isomers were readily chain elongated. Again, as with the octadecadienoic acid isomers the best substrate had the first double bond at position 7. Again the rate of chain elongation was chain length dependent since both 5,8,11- and 7,10,13-eicosatrienoic acid were chain elongated at lower rates than were their 18 carbon analogs. When the substrates were grouped according to common terminal structures no single feature was identifiable which dictated whether a primer would readily be chain elongated. Our findings are thus most consistent with a high degree of substrate specificity for condensation which involves carboxyl recognition but is also dictated both by chain length, double-bond positions, and degree of unsaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号