首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinase (MMP)-2 and MMP-9 are closely related metalloproteinases that are implicated in angiogenesis. The two proteins have a similar domain structure and highly homologous catalytic domains, making them an excellent comparative model for understanding the structural basis of substrate recognition by the MMP family. Although the two MMPs exhibit some overlap in substrate recognition, our recent work showed that MMP-2 can cleave a set of peptide substrates that are only poorly recognized by MMP-9 (Chen, E. I., Kridel, S. J., Howard, E. W., Li, W., Godzik, A., and Smith, J. W. (2002) J. Biol. Chem. 277, 4485-4491). Mutations at the P(2) position of these peptide substrates dramatically reduced their selectivity for MMP-2. Inspection of the corresponding S(2) pocket of the substrate-binding cleft of the protease reveals that MMP-9 contains an Asp, whereas MMP-2 contains Glu. Here, we test the hypothesis that this conservative substitution has a role in substrate selectivity. Mutation of Glu(412) in MMP-2 to Asp significantly reduced the hydrolysis of selective substrates, with only a minor effect on hydrolysis of non-selective substrates. The predominant effect of the mutation is at the level of k(cat), or turnover rate, with reductions reaching as high as 37-fold. The residues that occupy this position in other MMPs are highly variable, providing a potential structural basis for substrate recognition across the MMP family.  相似文献   

2.
The mechanism of triple helical collagen unwinding and cleavage by collagenases in the matrix metalloproteinase (MMP) family is complex and remains enigmatic. Recent reports show that triple helicase activity is initiated by the hemopexin C domain of membrane type 1-MMP, whereas catalytically inactive full-length interstitial collagenase (MMP-1) exhibits full triple helicase functionality pointing to active site determinants that are needed to complete the triple helicase mechanism. In MMP-8, the neutrophil collagenase, a conserved Gly at the S(3)' substrate specificity subsite is replaced by Asn(188) that forms a highly unusual cis bond with Tyr(189), a conserved active site residue in the collagenases. Only in MMP-1 is the S(3)' Gly also replaced, and there too a cis configured Glu-Tyr occurs. Thus, this high energy peptide bond coupled to the canonical Tyr may be important in the collagenolytic process. In a systematic mutagenesis investigation of the MMP-8 S(3)' subsite we found that introducing an S(3)' Gly(188) into MMP-8 reduced collagenolytic efficiency by approximately 30% with a corresponding reduction in cleavage of a synthetic peptide fluorescence resonance energy transfer substrate analogue of the alpha2(I) collagen chain cleavage site. The substitution of Asn(188) to Leu, a hydrophobic residue of similar size to the highly polar Asn and designed to retain the cis bond, revealed the importance of hydrogen bonding to bound substrate with both collagenolytic and peptidic activities reduced approximately 3-fold. In contrast, the specificity for type I collagen of the mutant Y189F dropped 3-fold without any significant alteration in general peptidase activity. Therefore, S(3)' and in particular the hydrogen bonding potential of Tyr(189) is a specific molecular determinant for MMP-8 triple helicase activity. The cis bond connection to Asn(188) juxtaposes these two side chains for closely spaced hydrogen bonding with substrate that improves collagenolytic and general catalytic efficiency that could be exploited for new collagenase-specific inhibitor drugs.  相似文献   

3.
We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.  相似文献   

4.
Human matrix metalloproteinase-26 (MMP-26/endometase/matrilysin-2) is a newly identified MMP and its structure has not been reported. The enzyme active site S1' pocket in MMPs is a well defined substrate P1' amino acid residue-binding site with variable depth. To explore MMP-26 active site structure-activity, a series of new potent mercaptosulfide MMP inhibitors (MMPIs) with Leu or homophenylalanine (Homophe) side chains at the P1' site were selected. The Homephe side chain is designed to probe deep S1' pocket MMPs. These inhibitors were tested against MMP-26 and several MMPs with known x-ray crystal structures to distinguish shallow, intermediate, and deep S1' pocket characteristics. MMP-26 has an inhibition profile most similar to those of MMPs with intermediate S1' pockets. Investigations with hydroxamate MMPIs, including those designed for deep pocket MMPs, also indicated the presence of an intermediate pocket. Protein sequence analysis and homology modeling further verified that MMP-26 has an intermediate S1' pocket formed by Leu-204, His-208, and Tyr-230. Moreover, residue 233 may influence the depth of an MMP S1' pocket. The residue at the equivalent position of MMP-26 residue 233 is hydrophilic in intermediate-pocket MMPs (e.g. MMP-2, -8, and -9) and hydrophobic in deep-pocket MMPs (e.g. MMP-3, -12, and -14). MMP-26 contains a His-233 that renders the S1' pocket to an intermediate size. This study suggests that MMPIs, protein sequence analyses, and molecular modeling are useful tools to understand structure-activity relationships and provides new insight for rational inhibitor design that may distinguish MMPs with deep versus intermediate S1' pockets.  相似文献   

5.
Matrix metalloproteinase (MMP) family members are involved in the physiological remodeling of tissues and embryonic development as well as pathological destruction of extracellular matrix components. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric, fluorogenic triple-helical peptide (THP) models of the MMP-1 cleavage site in type II collagen. The substrates were designed to incorporate the fluorophore/quencher pair of (7-methoxycoumarin-4-yl)acetyl (Mca) and N-2,4-dinitrophenyl (Dnp) in the P(5) and P(5)' positions, respectively. In addition, Arg was incorporated in the P(2)' and P(8)' positions to enhance enzyme activity and improve substrate solubility. The desired sequences were Gly-Pro-Lys(Mca)-Gly-Pro-Gln-Gly approximately Leu-Arg-Gly-Gln-Lys(Dnp)-Gly-Ile/Val-Arg. Two fluorogenic substrates were prepared, one using a covalent branching protocol (fTHP-1) and one using a peptide self-assembly approach (fTHP-3). An analogous single-stranded substrate (fSSP-3) was also synthesized. Both THPs were hydrolyzed by MMP-1 at the Gly approximately Leu bond, analogous to the bond cleaved in the native collagen. The individual kinetic parameters for MMP-1 hydrolysis of fTHP-3 were k(cat) = 0.080 s(-1) and K(M) = 61.2 microM. Subsequent investigations showed fTHP-3 hydrolysis by MMP-2, MMP-3, MMP-13, a C-terminal domain-deleted MMP-1 [MMP-1(Delta(243-450))], and a C-terminal domain-deleted MMP-3 [MMP-3(Delta(248-460))]. The order of k(cat)/K(M) values was MMP-13 > MMP-1 approximately MMP-1(Delta(243-450)) approximately MMP-2 > MMP-3 approximately MMP-3(Delta(248-460)). Studies on the effect of temperature on fTHP-3 and fSSP-3 hydrolysis by MMP-1 showed that the activation energies between these two substrates differed by 3.4-fold, similar to the difference in activation energies for MMP-1 hydrolysis of type I collagen and gelatin. This indicates that fluorogenic triple-helical substrates mimic the behavior of the native collagen substrate and may be useful for the investigation of collagenase triple-helical activity.  相似文献   

6.
We have recently cloned MMP-19, a novel matrix metalloproteinase, which, due to unique structural features, was proposed to represent the first member of a new MMP subfamily (Pendás, A. M., Kn?uper, V. , Puente, X. S., Llano, E., Mattei, M. G., Apte, S., Murphy, G., and López-Otin, C. (1997) J. Biol. Chem. 272, 4281-4286). A recombinant COOH-terminal deletion mutant of MMP-19 (proDelta(260-508)MMP-19), comprising the propeptide and the catalytic domain, was expressed in Escherichia coli, refolded, and purified. Interestingly, we found that proDelta(260-508)MMP-19 has the tendency to autoactivate, whereby the Lys(97)-Tyr(98) peptide bond is hydrolyzed, resulting in free catalytic domain. Mutation of two residues (Glu(88) --> Pro and Pro(90) --> Val) within the propeptide latency motif did not prevent autoactivation but the autolysis rate was somewhat reduced. Analysis of the substrate specificity revealed that the catalytic domain of MMP-19 was able to hydrolyze the general MMP substrate Mca-Pro-Leu-Gly-Dpa-Ala-Arg-NH(2) and, with higher efficiency, the stromelysin substrate Mca-Pro-Leu-Ala-Nva-Dpa-Ala-Arg-NH(2). Kinetic analysis of the interactions of the catalytic domain of MMP-19 with the natural MMP inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), showed strong inhibition using TIMP-2, TIMP-3, and TIMP-4, while TIMP-1 was less efficient. We also demonstrated that synthetic hydroxamic acid-based compounds efficiently inhibited the enzyme. The catalytic domain of MMP-19 was able to hydrolyze the basement membrane components type IV collagen, laminin, and nidogen, as well as the large tenascin-C isoform, fibronectin, and type I gelatin in vitro, suggesting that MMP-19 is a potent proteinase capable of hydrolyzing a broad range of extracellular matrix components. Neither the catalytic domain nor the full-length MMP-19 was able to degrade triple-helical collagen. Finally, and in contrast to studies with other MMPs, MMP-19 catalytic domain was not able to activate any of the latent MMPs tested in vitro.  相似文献   

7.
Unregulated activities of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix components, such as collagen and laminin. However, clinical trials with small molecule MMP inhibitors have been largely unsuccessful, with a lack of selectivity considered particularly problematic. Enhanced selectivity could be achieved by taking advantage of differences in substrate secondary binding sites (exosites) within the MMP family. In this study, triple-helical substrates and triple-helical transition state analog inhibitors have been utilized to dissect the roles of potential exosites in MMP-9 collagenolytic behavior. Substrate and inhibitor sequences were based on either the alpha1(V)436-450 collagen region, which is hydrolyzed at the Gly (downward arrow) Val bond selectively by MMP-2 and MMP-9, or the Gly (downward arrow) Leu cleavage site within the consensus interstitial collagen sequence alpha1(I-III)769-783, which is hydrolyzed by MMP-1, MMP-2, MMP-8, MMP-9, MMP-13, and MT1-MMP. Exosites within the MMP-9 fibronectin II inserts were found to be critical for interactions with type V collagen model substrates and inhibitors and to participate in interactions with an interstitial (types I-III) collagen model inhibitor. A triple-helical peptide incorporating a fibronectin II insert-binding sequence was constructed and found to selectively inhibit MMP-9 type V collagen-based activities compared with interstitial collagen-based activities. This represents the first example of differential inhibition of collagenolytic activities and was achieved via an exosite-binding triple-helical peptide.  相似文献   

8.
Substrate hydrolysis by matrix metalloproteinase-9   总被引:4,自引:0,他引:4  
The catalytic clefts of all matrix metalloproteinases (MMPs) have a similar architecture, raising questions about the redundancy in substrate recognition across the protein family. In the present study, an unbiased phage display strategy was applied to define the substrate recognition profile of MMP-9. Three groups of substrates were identified, each occupying a distinct set of subsites within the catalytic pocket. The most prevalent motif contains the sequence Pro-X-X-Hy-(Ser/Thr) at P(3) through P(2'). This sequence is similar to the MMP cleavage sites within the collagens and is homologous to substrates the have been selected for other MMPs. Despite this similarity, most of the substrates identified here are selective for MMP-9 over MMP-7 and MMP-13. This observation indicates that substrate selectivity is conferred by key subsite interactions at positions other than P(3) and P(1'). This study shows that MMP-9 has a unique preference for Arg at both P(2) and P(1), and a preference for Ser/Thr at P(2'). Substrates containing the consensus MMP-9 recognition motif were used to query the protein data bases. A surprisingly limited list of putative physiologic substrates was identified. The functional implications of these proteins lead to testable hypotheses regarding physiologic substrates for MMP-9.  相似文献   

9.
A disintegrin and metalloprotease (ADAM) proteases are implicated in multiple diseases, but no drugs based on ADAM inhibition exist. Most of the ADAM inhibitors developed to date feature zinc-binding moieties that target the active site zinc, which leads to a lack of selectivity and off-target toxicity. We hypothesized that secondary binding site (exosite) inhibitors should provide a viable alternative to active site inhibitors. Potential exosites in ADAM structures have been reported, but no studies describing substrate features necessary for exosite interactions exist. Analysis of ADAM cognate substrates revealed that glycosylation is often present in the vicinity of the scissile bond. To study whether glycosylation plays a role in modulating ADAM activity, a tumor necrosis factor α (TNFα) substrate with and without a glycan moiety attached was synthesized and characterized. Glycosylation enhanced ADAM8 and -17 activities and decreased ADAM10 activity. Metalloprotease (MMP) activity was unaffected by TNFα substrate glycosylation. High throughput screening assays were developed using glycosylated and non-glycosylated substrate, and positional scanning was conducted. A novel chemotype of ADAM17-selective probes was discovered from the TPIMS library (Houghten, R. A., Pinilla, C., Giulianotti, M. A., Appel, J. R., Dooley, C. T., Nefzi, A., Ostresh, J. M., Yu, Y., Maggiora, G. M., Medina-Franco, J. L., Brunner, D., and Schneider, J. (2008) Strategies for the use of mixture-based synthetic combinatorial libraries. Scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods. J. Comb. Chem. 10, 3–19; Pinilla, C., Appel, J. R., Borràs, E., and Houghten, R. A. (2003) Advances in the use of synthetic combinatorial chemistry. Mixture-based libraries. Nat. Med. 9, 118–122) that preferentially inhibited glycosylated substrate hydrolysis and spared ADAM10, MMP-8, and MMP-14. Kinetic studies revealed that ADAM17 inhibition occurred via a non-zinc-binding mechanism. Thus, modulation of proteolysis via glycosylation may be used for identifying novel, potentially exosite binding compounds. The newly described ADAM17 inhibitors represent research tools to investigate the role of ADAM17 in the progression of various diseases.  相似文献   

10.
There is compelling in vitro and in vivo evidence to implicate mast cells in the development of fibrosis. However, an important question remains as to the mechanisms by which mast cells mediate fibrosis. Recent evidence from our laboratory (Gruber et al., 1997, J. Immunol. , 158:2310-2317) has revealed that tryptase, the unique and abundant serine protease of human mast cells, is capable of activating fibroblasts by stimulating chemotaxis, proliferation, and procollagen mRNA synthesis. Regulation of matrix metalloproteinase (MMP) expression is another key step in connective tissue remodeling. Therefore, the effect of tryptase on fibroblast MMP expression was investigated. Proteolytically active tryptase did not alter the cellular mRNA levels for fibroblast MMP-1, MMP-2, MMP-3, and MMP-9 as detected by RNase protection assays. Moreover, tryptase did not alter the basal levels of MMP-1, MMP-2, MMP-3, MMP-9, or the tissue inhibitor of MMP-1 (TIMP-1) in fibroblast conditioned media as detected by specific enzyme-linked immunosorbent assay (ELISA). These results indicate that tryptase does not increase MMP expression in normal dermal fibroblasts. Moreover, these data strengthen the potential role of this unique serine protease as a potent fibrogenic factor.  相似文献   

11.
MMP-2 is a member of the matrix metalloproteinase family that has been implicated in tumor cell metastasis and angiogenesis. Here, we describe the solution structure of a catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020), determined by three-dimensional heteronuclear NMR spectroscopy. The catalytic domain, designated MMP-2C, has a short peptide linker replacing the internal fibronectin-domain insertion and is enzymatically active. Distance geometry-simulated annealing calculations yielded 14 converged structures with atomic root-mean-square deviations (r.m.s.d.) of 1.02 and 1.62 A from the mean coordinate positions for the backbone and for all heavy atoms, respectively, when 11 residues at the N-terminus are excluded. The structure has the same global fold as observed for other MMP catalytic domains and is similar to previously solved crystal structures of MMP-2. Differences observed between the solution and the crystal structures, near the bottom of the S1' specificity loop, appear to be induced by the large inhibitor present in the solution structure. The MMP-2C solution structure is compared with MMP-8 crystal structure bound to the same inhibitor to highlight the differences especially in the S1' specificity loop. The finding provides a structural explanation for the selectivity between MMP-2 and MMP-8 that is achieved by large inhibitors.  相似文献   

12.
The discovery of potent N-hydroxyl caprolactam matrix metalloproteinase (MMP) inhibitors (6) based on the natural product Cobactin-T (2) is described. The synthetic method, which utilizes the ring closing metathesis reaction, is compatible to provide complementary (R) and (S) enantiomers. These compounds tested against MMP-2 and 9, show that the R stereochemistry (i.e., 16), which is opposite for that found in the natural product Cobactin-T is >1000-fold more active with IC(50) values of 0.2-0.6nM against both enzymes. The variation in the incorporation of the sulfonamide enzyme recognition element (Ar(2)XAr(1)SO(2)N(R(1)), 6), along with alterations in the RCM/double bond chemistry (R(2)) provided a series of sub nanomolar MMP inhibitors. For example, compounds 16 and 34 were found to be the most potent with IC(50) values against MMP-2 and MMP-9 found to be between 0.2 and 0.6nM with 34 being the most potent compound discovered (MMP-2 IC(50)=0.39nM and MMP-9 IC(50)=0.22nM). Compounds 16 and 34 showed acceptable drug-like properties in vivo with compound 34 showing oral bioavailability.  相似文献   

13.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

14.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) hydrolyzes the Met(374)-Ser(375) (P3-P2), Glu(416)-Leu(417) and Ser(432)-Leu(433) peptide bonds in human alpha(2)-antiplasmin (alpha(2)-AP), the main physiological plasmin inhibitor. Cleavage is completely abolished in the presence of the MMP inhibitors EDTA or 1,10-phenanthroline. At enzyme/substrate ratio of 1:10 at 37 degrees C, alpha(2)-AP protein cleavage occurs with a half-life of 8 min, and is associated with rapid loss of inhibitory activity towards plasmin with a half-life of 5 min. alpha(2)-AP cleaved by MMP-3 does no longer form a stable complex with plasmin, as shown by SDS-PAGE, and does no longer interact with plasminogen, as shown by crossed immunoelectrophoresis with plasminogen added to the gel. These data are compatible with the removal of a COOH-terminal fragment containing the reactive site peptide bond and the plasmin(ogen)-binding site. In addition, MMP-3 cleaves the Pro(19)-Leu(20) peptide bond in alpha(2)-AP, thereby removing the fibrin-binding site from the inhibitor. A dysfunctional alpha(2)-AP variant (Ala-alpha(2)-AP or alpha(2)-AP Enschede), with an alanine insertion in the reactive site sequence converting it from a plasmin inhibitor into a substrate, was also efficiently cleaved by MMP-3 (half-life of 13 min at 37 degrees C and enzyme/substrate ratio of 1:10). Cleavage and inactivation of alpha(2)-AP by MMP-3 may constitute a mechanism favoring local plasmin-mediated proteolysis.  相似文献   

15.
The X-ray crystal structures of the catalytic domain of human collagenase-3 (MMP-13) and collagenase-1 (MMP-1) with bound inhibitors provides a basis for understanding the selectivity profile of a novel series of matrix metalloprotease (MMP) inhibitors. Differences in the relative size and shape of the MMP S1' pockets suggest that this pocket is a critical determinant of MMP inhibitor selectivity. The collagenase-3 S1' pocket is long and open, easily accommodating large P1' groups, such as diphenylether. In contrast, the collagenase-1 S1' pocket must undergo a conformational change to accommodate comparable P1' groups. The selectivity of the diphenylether series of inhibitors for collagenase-3 is largely determined by their affinity for the preformed S1' pocket of collagenase-3, as compared to the induced fit in collagenase-1.  相似文献   

16.
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.  相似文献   

17.
The extracellular domain of beta-amyloid precursor protein (APP) contains an inhibitor against matrix metalloproteinase-2 (MMP-2, gelatinase A). Our previous study ( Higashi, S. and Miyazaki, K. (2003) J Biol Chem 278, 14020-14028 ) demonstrated that the inhibitor is localized within the ISYGN-DALMP sequence of APP, and a synthetic decapeptide containing this sequence (named APP-derived inhibitory peptide, APP-IP) selectively inhibits the activity of MMP-2. To determine the region of interaction that correlates with the selective inhibition, we constructed various MMP-2 mutants. An MMP-2 mutant, which had the hemopexin-like domain and three fibronectin-like type II domains of MMP-2 deleted, and native MMP-2 showed similar affinities for APP-IP, suggesting that only the catalytic domain of MMP-2 is essential for the interaction. Studies of chimeric proteases, consisting of various parts of the MMP-2 catalytic domain and those of MMP-7 (matrilysin) or MMP-9 (gelatinase B), further revealed that Ala(88) and Gly(94) in the non-prime side and Tyr(145) and Thr(146) in the prime side of the substrate-binding cleft of MMP-2 contribute separately to the selective inhibition. Replacement of the amino acid residue at position 94 of a chimeric MMP mutant affected its interaction with the C-terminal Pro(10) of APP-IP, whereas that of residues 145-148 affected the interaction with Tyr(3) of the inhibitor, suggesting that the N to C direction of APP-IP relative to the substrate-binding cleft of MMP is analogous to that of propeptide in proMMP, and opposite to that of substrate. When the APP-IP sequence was added to the N terminus of the catalytic domain of MMP-2, the activity of the protease was intramolecularly inhibited. We speculate that the direction of interaction makes the active site-bound APP-IP resistant to cleavage, thereby supporting the inhibitory action of the peptide inhibitor.  相似文献   

18.
Novel sultam hydroxamates with potent MMP activity were transformed into potent TACE inhibitors, lacking MMP activity. To accomplish this we relied on structural differences between the MMP and TACE S1' pockets and the known advantageous fit of a 2-methyl-4-quinolinylmethoxyphenyl group into this region. From this approach, compound 7d was identified as a potent TACE inhibitor (IC50 = 3.7 nM) that lacked MMP-1, -2, -9, and -13 activity.  相似文献   

19.
Matrix metalloproteinases (MMPs) and the related tumor necrosis factor converting enzyme (TACE) are involved in tissue remodeling, cell migration, and processing of signaling molecules, such as cytokines and adhesion molecules. Fluorescence-quenched peptide substrates have been widely used to quantitate the actual enzymatic activity of MMPs. However, the various MMPs have very different specific activities toward these substrates. This restricts their value for the determination of composite proteolytic activity of mixtures of metalloproteinases in biological fluids. The N-terminal elongation of the most widely used MMP substrate (FS-1) with a Lys to the sequence Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH(2) (FS-6) yields a fluorogenic peptide with improved substrate properties. As compared to FS-1, the specificity constant (kcat/Km) of FS-6 for collagenases (MMP-1, MMP-8, MMP-13) and MT1-MMP (MMP-14) is increased two- to ninefold and threefold, respectively, while those for gelatinases and matrilysin remain equally high. Using high-performance liquid chromatography-fluorescence detection, MMP activity can be quantitated in the picomolar range. FS-6 shows up to twofold higher specificity constants (kcat/Km of 0.8x10(6)M(-1)s(-1)) for TACE, as compared to standard substrates Mca-PLAQAV-Dpa-RSSSAR-NH(2) and Dabcyl-LAQAVRSSSAR-EDANS. FS-6 is fully water soluble and thus allows measurement of metalloproteinase activity in tissue culture conditions, e.g., on the surface of viable cells in situ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号