首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ameliorative effects of few naturally occurring antioxidants like ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) either alone or in combination with meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA (MiADMSA), on parameters indicative of oxidative stress in the liver, kidney, brain and blood of lead-exposed rats were studied. Male Wistar rats were exposed to 0.1% lead acetate in drinking water for 3 months and treated thereafter with DMSA or its analogue MiADMSA (50 mg/kg, intraperitoneally), either individually or in combination with vitamin E (5 mg/kg, intramuscularly) or vitamin C (25 mg/kg, orally) once daily for 5 days. The effects of these treatments in influencing the lead-induced alterations in haem synthesis pathway, hepatic, renal and brain oxidative stress and lead concentration from the soft tissues were investigated. Exposure to lead produced a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity from 8.44+/-0.26 in control animals to 1.76+/-0.32 in lead control, reduction in glutathione (GSH) from 3.56+/-0.14 to 2.57+/-0.25 and an increase in zinc protoporphyrin level from 62.0+/-3.9 to 170+/-10.7 in blood, suggesting altered haem synthesis pathway. Both the thiol chelators and the two vitamins were able to increase blood ALAD activity towards normal, however, GSH level responded favorably only to the two thiol chelators. The most prominent effect on blood ALAD activity was, however, observed when MiADMSA was co-administered with vitamin C (7.51+/-0.17). Lead exposure produced a significant depletion of hepatic GSH from 4.59+/-0.78 in control animals to 2.27+/-0.47 in lead controls and catalase activity from 100+/-3.4 to 22.1+/-0.25, while oxidized glutathione (GSSG; 0.34+/-0.05 to 2.05+/-0.25), thiobarbituric acid reactive substance (TBARS; 1.70+/-0.45 to 5.22+/-0.50) and glutathione peroxidase (GPx) levels (3.41+/-0.09 to 6.17+/-0.65) increased significantly, pointing to hepatic oxidative stress. Altered, reduced and oxidized GSH levels showed significant recovery after MiADMSA and DMSA administration while, vitamins E and C were effective in reducing GSSG and TBARS levels and increasing catalase activity. Administration of MiADMSA alone and the combined administration of vitamin C along with DMSA and MiADMSA were most effective in increasing hepatic GSH levels to 4.88+/-0.14, 4.09+/-0.12 and 4.30+/-0.06, respectively. Hepatic catalase also reached near normal level in animals co-administered vitamin C with DMSA or MiADMSA (82.5+/-4.5 and 84.2+/-3.5, respectively). Combined treatments with vitamins and the thiol chelators were also able to effectively reduce lead-induced decrease in renal catalase activity and increase in TBARS and GPx level. Combination therapy, however, was unable to provide an effective reversal in the altered parameters indicative of oxidative stress in different brain regions, except in catalase activity. The result also suggests a beneficial role of vitamin E when administered along with the thiol chelators (particularly with MiADMSA) in reducing body lead burden. Blood lead concentration was reduced from 13.3+/-0.11 in lead control to 0.3+/-0.01 in MiADMSA plus vitamin E-treated rats. Liver and kidney lead concentration also showed a most prominent decrease in MiADMSA plus vitamin E co-administered rats (5.29+/-0.16 to 0.63+/-0.02 and 14.1+/-0.21 to 1.51+/-0.13 in liver and kidney, respectively). These results thus suggest that vitamin C administration during chelation with DMSA/MiADMSA was significantly beneficial in reducing oxidative stress however, it had little or no additive effect on the depletion of lead compared with the effect of chelators alone. Thus, the co-administration of vitamin E during chelation treatment with DMSA or MiADMSA could be recommended for achieving optimum effects of chelation therapy.  相似文献   

2.
We compared the therapeutic efficacy of captopril and a thiol chelating agent, meso 2,3-dimercaptosuccinic acid (DMSA) either individually or in combination against arsenite induced oxidative stress and mobilization of metal in rats. Animals were exposed to 100 ppm arsenite as sodium arsenite in drinking water for six weeks followed by treatment with DMSA (50 mg/kg, orally), captopril (50 mg/kg, intraperitoneally) either alone or in combination, once daily for 5 consecutive days. Arsenite exposure led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity, glutathione and platelet levels while significantly increased the level of reactive oxygen species (in RBCs). Hepatic reduced glutathione (GSH) level showed a significant decrease while, thiobarbituric acid reactive substances (TBARS) levels increased on arsenite exposure indicating arsenite induced hepatic oxidative stress. Kidney GSH, GSSG, catalase and TBARS remained unchanged on arsenite exposure. Treatment with DMSA was effective in increasing ALAD activity while, captopril was ineffective when given alone. Captopril when co-administered with DMSA also provided no additional beneficial effect on blood ALAD activity but significant brought altered platelet counts back to the normal value. In contrast, administration of captopril alone provided significant beneficial effects on hepatic oxidative stress, and in combination with DMSA provided a more pronounced recovery in the TBARS level compared to the individual effect of DMSA and captopril. Renal biochemical variables remained insensitive to arsenite and any of the treatments. Interestingly, combined administration of captopril with DMSA had a remarkable effect in depleting total arsenic concentration from blood and soft tissues. These results lead us to conclude that captopril administration during chelation treatment had some beneficial effects particularly on the protection of inhibited blood ALAD activity, and depletion of arsenic level. The study supports our earlier conclusion that a co-administration of an antioxidant is more beneficial than monotherapy with the chelating agents, in order to achieve optimal effects of chelation in arsenite toxicity.  相似文献   

3.
The present study deals with the therapeutic potential of combined administration of N-acetylcysteine (NAC) along with monoisoamyl DMSA (MiADMSA) against chronic arsenic poisoning in guinea pigs. Animal were exposed to 50 ppm arsenic in drinking water for 8 mo and subsequently treated for 5 consecutive days with 100 mg/kg NAC (orally) and MiADMSA (intraperitoneally), individually or in combination (50 mg/kg each). Arsenic exposure produced a significant depletion of blood δ-aminolevulinic acid dehydrate (ALAD) activity, increased the blood zinc protoporphyrin (ZPP) level, and reduced blood and liver glutathione (GSH) levels in guinea pigs. Hepatic oxidized glutathione (GSSG) and thiobarbituric acid reactive substance (TBARS) levels showed a marked increase, whereas hepatic alkaline phosphatase (ALP) activity decreased and acid phosphatase (ACP) activity increased on arsenic exposure. Significant depletion of liver transaminase activities on arsenic exposure suggests organ injury. Administration of MiADMSA, alone and in combination with NAC after arsenic exposure, was able to significantly enhance hepatic GSH and to reduce GSSG and TBARS levels compared to the arsenic control. Biochemical variables indicative of liver injury generally remained insensitive to any of these treatments. The recoveries in parameters indicative of oxidative stress were more marked in guinea pigs treated with combined administration of NAC and MiADMSA than monotherapy. Interestingly, there was a more pronounced depletion of arsenic from blood and tissues after combined treatment with NAC plus MiADMSA than MiADMSA. Blood and tissues copper, zinc, iron, and calcium concentrations showed a significant increase after arsenic exposure, which showed improvement, particularly after combined administration of MiADMSA and NAC. Based on these data, a proposal can be made that greater effectiveness in chelation treatment against chronic arsenic poisoning (i.e., turnover in the oxidative stress and removed of arsenic from the system) could be achieved by combined administration of an antioxidant (preferably having a thiol moiety) with MiADMSA.  相似文献   

4.
The therapeutic efficacy of calcium disodium ethylenediaminetetracetic acid (CaNa(2)EDTA) and the two thiol chelators, 2,3-dimercaptopropane 1-sulfonate (DMPS) and monoisoamyl dimercaptosuccinic acid (MiADMSA) was studied, both individually and in combination, in reducing lead concentration in blood and soft tissues and in restoring lead induced altered biochemical variables in rats. Exposure to subacute dose of lead implicated a critical role of reactive oxygen species (ROS) and oxidative stress in altering the normal values of these variables. Exposure to lead caused a significant inhibition of blood delta-aminolevulinic acid dehydratase (ALAD), an important enzyme in the haem synthesis pathway and glutathione (GSH) level. These changes were also accompanied by inhibition of ALAD activity in kidney, delta-aminolevulinic acid synthase (ALAS) activities in liver and changes in platelet counts in whole blood suggesting disturbed haem synthesis pathway. Lead exposure also led to a pronounced depletion of brain GSH contents, superoxide dismutase (SOD) activity, an increase in thiobarbituric acid reactive substances (TBARS), and activity of glutathione S-transferase (GST). Specific activities of membrane-bound enzymes, acetylcholinesterase (AChE) and monoamine oxidase (MAO), were significantly inhibited on lead exposure. These biochemical changes were correlated with increased uptake of lead in blood and soft tissues. Post lead exposure treatment with MiADMSA in particular provided significant recovery in altered biochemical variables besides significant depletion of tissue lead burden. Treatment with CaNa(2)EDTA and DMPS individually had only moderate beneficial effects on tissue oxidative stress, although they were equally effective in the removal of tissue lead burden. Tissue zinc and copper levels did not depict any significant depletion, although changes like marked depletion of zinc following CaNa(2)EDTA and copper after MiADMSA administration were of some concern. Combined administration of CaNa(2)EDTA, particularly with MiADMSA, was the most effective treatment protocol compared to all other treatments. It can be concluded from our present results that combined therapy with CaNa(2)EDTA and MiADMSA proved significantly better in restoring biochemical and clinical variables over monotherapy with these chelating agents against subacute lead exposure in adult rats.  相似文献   

5.
Arsenic and its compounds cause adverse health effects in humans. Current treatment employs administration of thiol chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised by number of limitations due to their lipophobic nature, particularly in case of chronic poisoning. Combination therapy is a new approach to ensure enhanced removal of metal from the body, reduced doses of potentially toxic chelators, and no redistribution of metal from one organ to another, following chronic metal exposure. The present study attempts to investigate dose-related effects of two thiol chelators, DMSA and one of its new analogues, monoisoamyl dimercaptosuccinic acid (MiADMSA), when administered in combination with the aim of achieving normalization of altered biochemical parameters suggestive of oxidative stress and depletion of inorganic arsenic following chronic arsenic exposure. Twenty-five adult male Wistar rats were given 25 ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 0.3 mmol/kg (orally) when administered individually or 0.15 mmol/kg and 0.3 mmol/kg (once daily for 5 consecutive days), respectively, when administered in combination. Arsenic exposure led to the inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity and depletion of glutathione (GSH) level. These changes were accompanied by significant depletion of hemoglobin, RBC and Hct as well as blood superoxide dismutase (SOD) acitivity. There was an increase in hepatic and renal levels of thiobarbituric acid-reactive substances, while GSH:GSSG ratio decreased significantly, accompanied by a significant increase in metallothionein (MT) in hepatocytes. DNA damage based on denaturing polyacrylamide gel electrophoresis revealed significant loss in the integrity of DNA extracted from the liver of arsenic-exposed rats compared to that of normal animals. These changes were accompanied by a significant elevation in blood and soft-tissue arsenic concentration. Co-administration of DMSA and MiADMSA at lower dose (0.15 mmol/kg) was most effective not only in reducing arsenic-induced oxidative stress but also in depleting arsenic from blood and soft tissues compared to other treatments. This combination was also able to repair DNA damage caused following arsenic exposure. We thus recommend combined administration of DMSA and MiADMSA for achieving optimum effects of chelation therapy.  相似文献   

6.
Flora SJ  Bhadauria S  Pant SC  Dhaked RK 《Life sciences》2005,77(18):2324-2337
Chronic arsenic toxicity is a widespread problem, not only in India and Bangladesh but also in various other regions of the world. Exposure to arsenic may occur from natural or industrial sources. The treatment that is in use at present employs administration of thiol chelators, such as meso 2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised with number of limitations due to their lipophobic nature, particularly for their use in cases of chronic poisoning. During chronic exposure, arsenic gains access into the cell and it becomes mandatory for a drug to cross cell membrane to chelate intracellular arsenic. To address this problem, analogs of DMSA having lipophilic character, were examined against chronic arsenic poisoning in experimental animals. In the present study, therapeutic efficacy of meso 2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), monoisoamyl DMSA (MiADMSA) were compared in terms of reducing arsenic burden, as well as recovery in the altered biochemical variables particularly suggestive of oxidative stress. Adult male Wistar rats were given 100-ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 50 mg/Kg (orally) once daily for 5 consecutive days. Arsenic exposure resulted in marked elevation in reactive oxygen species (ROS) in blood, inhibition of ALAD activity and depletion of GSH. These changes were accompanied by significant decline in blood hemoglobin level. MiADMSA was the most effective chelator in reducing ROS in red blood cells, and in restoring blood ALAD compared to two other chelators. Brain superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased, while ROS and TBARS increased significantly following arsenic exposure. There was a significant increase in the activity of glutathione-S-transferase (GST) with a corresponding decline in its substrate i.e. glutathione. Among all the three chelators, MiADMSA showed maximum reduction in the level of ROS in brain. Additionally, administration of MiADMSA was most effective in counteracting arsenic induced inhibition in brain ALAD, SOD and GPx activity. Based on these results and in particular higher metal decorporation from blood and brain, we suggest MiADMSA to be a potential drug of choice for the treatment of chronic arsenic poisoning. However, further studies are required for the choice of appropriate dose, duration of treatment and possible effects on other major organs.  相似文献   

7.
Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of iron with MiADMSA provided more pronounced depletion of blood arsenic, while no additional beneficial effects on tissue arsenic level over the individual effect of MiADMSA were noted. The results lead us to conclude that iron supplementation during chelation has some beneficial effects particularly on heme synthesis pathway and blood arsenic concentration.  相似文献   

8.
We studied the efficacy of quercetin and a thiol chelating agent, monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA) either individually or in combination against arsenic-induced oxidative stress and mobilization of metal in mouse. Animals were chronically exposed to 25 ppm arsenite as sodium arsenite in drinking water for 12 months followed by treatment with MiADMSA (0.2 mmol/kg, orally), quercetin (0.2 mmol, orally) either alone or in combination, once daily for 5 consecutive days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, glutathione, white (WBC) and red blood cell (RBC) counts, and an increase in platelet levels while significantly increasing the level of reactive oxygen species (in RBCs). Hepatic reduced catalase (CAT) and glutathione peroxidase activities showed a depletion, whereas thiobarbituric acid reactive substances (TBARS) levels increased on arsenic exposure indicating arsenite-induced oxidative stress in blood and liver. Kidney CAT activity showed a depletion, whereas TBARS levels increased on arsenic exposure. These biochemical changes were accompanied by an increase in blood, liver, and kidney arsenic concentration. Treatment with MiADMSA was effective in increasing ALAD activity, whereas quercetin was ineffective when given alone. Quercetin when co-administered with MiADMSA also provided no additional beneficial effect on blood ALAD activity but significantly brought altered platelet counts nearer to the normal value. In contrast, administration of quercetin alone provided significant beneficial effects on hepatic oxidative stress and kidney TBARS levels. Renal biochemical variables remained insensitive to arsenic and any of the treatments. Interestingly, combined administration of quercetin with MiADMSA had a remarkable effect in depleting total arsenic concentration from blood and soft tissues. These results lead us to conclude that quercetin administration during chelation treatment had some beneficial effects particularly on the protection of inhibited blood ALAD activity and depletion of arsenic level from target organs. The study supports our earlier conclusion that a co-administration of an antioxidant particularly flavonoids more beneficial than monotherapy with the chelating agents to achieve optimal effects of chelation in arsenite toxicity.  相似文献   

9.
Thiols are known to act as protectants in the biological system for their involvement in a number of metabolic regulations. In this study, we investigated the effect of a new and potent thiol-chelating agent, monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA), an analog of meso 2,3-dimercaptosuccinic acid, to find out if it could act as a prooxidant (because of its lipophilic character) or antioxidant (because of thiol moiety) that could supplement its chelating properties in different age groups of male rats (young, adult, and old rats) and produce effective clinical recoveries in the treatment of metal intoxication. Animals were treated with 25, 50, and 100 mg/kg of MiADMSA, i.p, once daily for 1 week to assess the effect on the antioxidant system in major organs based on sensitive biochemical variables indicative of oxidative stress. Results suggested that MiADMSA administration increased the activity of d-aminolevulinic acid dehydratase in all the age groups and increased blood glutathione (GSH) levels in young rats. MiADMSA also potentiated the synthesis of metallothioneine in liver and kidneys and GSH levels in liver and brain. Apart from this it also significantly reduced the glutathione disulfide levels in tissues. However, administration of MiADMSA caused some concern over the copper loss. MiADMSA was found to be safe in rats of all ages.  相似文献   

10.
The aim of this study was to explore the therapeutic efficacies of combined use of meso-2,3-dimercaptosuccinic acid (DMSA) with calcium and ascorbic acid in the treatment of mild to moderately lead-intoxicated mice. Female albino mice were exposed to lead by drinking water contaminated with 0.1% (moderate lead exposure) or 0.05% (mild lead exposure) lead acetate. After the cessation of lead exposure, mice were supplemented by gavage with saline solution, 50 mg/kg body weight (b.w) DMSA, 100 mg/kg b.w DMSA, calcium and ascorbic acid, or 50 mg/kg b.w DMSA and calcium as well as ascorbic acid, respectively. Atomic absorption spectrophotometric method was used to analyze lead levels in blood, bone, liver, kidney and brain. Activities of blood δ-aminolevulinic acid dehydratase (ALAD) were determined by colorimetric method. DMSA supplemented alone could reduce lead levels in both soft tissues and bone and reverse lead-inhibited activities of blood ALAD in mild to moderately lead-intoxicated mice. On the other hand, combined use of DMSA with calcium and ascorbic acid achieved better therapeutic efficacies in mobilizing lead in blood, liver and kidney, and reversing lead-inhibited activities of blood ALAD in moderately lead intoxicated mice than DMSA supplemented alone. Moreover, the better therapeutic efficacies were also found in mildly lead intoxicated mice in mobilizing lead in blood and bone achieved by combined use of DMSA with calcium and ascorbic acid. Combined use of DMSA with calcium and ascorbic acid seems to be the better choice in the treatment of mild to moderate lead-intoxication.  相似文献   

11.
The effect of S-adenosyl-L-methionine (SAM) administration to both acute and chronic lead exposed mice was investigated. SAM was given s.c. at different doses and for different time intervals. The best results were obtained using 20 mg SAM/kg applied daily over a period of 20-22 days. Results obtained in both acute and chronic lead poisoning were quite similar. GSH concentration in blood and liver, reduced in intoxicated animals was increased after SAM administration reaching normal values. Blood, liver and kidney lead content notably increased at the beginning of SAM treatment and decreased rapidly in the group receiving SAM, attaining values near control levels in 2 weeks. A significant recovery of blood, liver, kidney, spleen and brain delta-aminolevulic acid dehydratase (ALA-D) initially reduced in poisoned animals, was clearly produced after SAM administration. A clear and direct correlation between the recovery of both ALA-D activity and GSH levels and the decreased concentration of lead in tissues was observed, reinforcing our proposal that enhancement of thiol content as a result of SAM administration would facilitate the detoxification process and lead removal, consequently reversing the inactivation of the enzyme. We conclude that SAM therapy is beneficial in the treatment of lead intoxication.  相似文献   

12.
Chronic lead exposure is associated with several health disorders in humans and animals. Lead exposure leads to the generation of reactive oxygen species and depletes body antioxidant enzymes causing damage to various macromolecules and ultimately cell death. Curcumin has been widely recognized to protect against metal toxicity but has major limitations of reduced bioavailability. Nanoencapsulation of curcumin could be an effective strategy to combat lead induced toxic manifestations. The present study investigates the protective efficacy of bulk and nanocurcumin against lead-induced toxicity. Swiss albino mice were daily exposed to lead acetate (25 mg/kg, i.p.) alone and after 1 h treated either with curcumin (15 mg/kg, orally) or nanocurcumin (15 mg/kg, orally) for two consecutive weeks. The preventive efficacy of nanocurcumin was evaluated against various altered biochemical variables suggestive of oxidative stress and lead accumulation in blood and soft tissues. Coadministration of nanocurcumin with lead restored the altered δ-aminolevulinic acid dehydratase activity, glutathione (reduced and oxidized) levels, and also decreased reactive oxygen species, and thiobarbituric acid reactive substances levels. Nanocurcumin due to its possible chelating property and enhanced bioavailability efficiently removed lead from blood and soft tissues compared to bulk curcumin. Results demonstrate the enhanced preventive efficacy of nanocurcumin and suggest an interesting and novel approach for better treatment of lead toxicity.  相似文献   

13.
The present study investigated the prophylactic influence of melatonin against cyclophosphamide-induced oxidative stress in mouse tissues. Lipid peroxidation, reduced glutathione (GSH), glutathione disulphide (GSSG), glutathione peroxidase (GSH-Px) and serum phosphatase levels were analyzed in brain, spleen liver, lungs, kidney and testes. Fifteen days oral administration with melatonin (0.1 mg/kg bw per day) before treatment checked the augmentation of the level of lipid peroxidation, blood GSSG and acid phosphatase caused by an acute treatment with a radiomimetic drug, cyclophosphamide (75 mg/kg bw). Cyclophosphamide-induced depletion in the level of GSH, GSH-Px and alkaline phosphatase was made up statistically significant by chronic melatonin administration given orally. The results indicate the antioxidative properties of melatonin resulting into its prophylactic property against the cyclophosphamide-induced biochemical alterations. The finding support the idea that melatonin is a potent free-radical scavenger and antioxidant.  相似文献   

14.
The current study was carried out to investigate the potential role of 4,5 dihydroxy benzene 1,3 disulfonic acid di sodium salt (Tiron) and glutathione (GSH) either individually or in combination against aluminum (Al)-induced toxicity in Wistar rats. Animals were exposed to aluminum chloride at a dose of 172.5mg/kg/d orally for 10 weeks. Tiron and GSH were administered at a dose of 471-mg/kg/d i.p. and 100mg/kg/d orally, respectively, for 7 consecutive days. Tiron is a diphenolic chelating compound which forms water soluble complexes with a large number of metal ions. Induction of oxidative stress was recorded in brain and serum after Al exposure. Significant decrease was recorded in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GP(x)), catalase (CAT), superoxide dismutase (SOD), acetyl cholinesterase (AChE) and an increase was observed in thiobarbituric acid reacting substance (TBARS) and glutathione-S-transferase (GST) in brain and serum. Most of the above parameters responded positively to individual therapy with Tiron, but more pronounced beneficial effects on the above-described parameters were observed when Tiron was administered in combination with GSH. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) studies also showed significantly high concentration of Al in brain and blood. Tiron was slightly more effective then GSH in reducing the concentration of Al from the brain and blood, however, no further improvement was recorded when Tiron was administered in combination with GSH in reducing the concentration of Al.  相似文献   

15.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

16.
The effect of combined administration of calcium (Ca), iron (Fe), zinc (Zn), chrysanthemum flavonoids, and meso‐2,3‐dimercaptosuccinic acid (DMSA) on the treatment of lead (Pb) intoxication in mice was studied. One hundred ninety female mice (SPF level, aged 18‐22 days) were randomly divided into two groups as experimental animals. Mice in group I (10 mice) served as normal control animals, and were administered deionized water containing 12.5 μL/L acetate acid for 6 weeks, whereas mice in group II (180 mice) were exposed to 0.1% (wt/vol) of lead acetate in deionized water for 6 weeks and served as experimental animals. After 6 weeks of successful modeling, 180 mice from group II (lead‐exposed) were divided into 18 groups of 10 mice each, 16 of which were treated by the combined administration of Ca, Fe, Zn, chrysanthemum flavonoids, and DMSA by L16 (215) orthogonal design. The remaining two groups were given treatment with low and high doses of DMSA, respectively. After three weeks of intervention (ig), the optimal treatment group was identified according to its blood lead level, as well as some antioxidant indices in the blood, liver, and hippocampus. The results indicated that the combined administration of Fe, Zn, chrysanthemum flavonoids, and DMSA with low dosage had the most significant effect on increasing the activities of blood delta‐aminolevulinic acid dehydratase and superoxide dismutase (SOD), hepatic SOD and hippocampus nitric oxide synthase while decreasing the blood lead level, the content of hepatic malondialdehyde and hippocampus nitric oxide; this was considered the optimal treatment group. There was no difference in the level of blood hemoglobin between the optimal treatment group and the model control group (the first group of the orthogonal experiment). The activities of blood glutathione (GSH), hepatic GSH and glutathione peroxidase of the optimal treatment group were the same as other groups’, and the recovery of the related indexes in the optimal effect group closely resembled the high dosage DMSA group. It can be concluded that the coadministration of Fe, Zn, and chrysanthemum flavonoids along with a low‐dose DMSA effectively reduces Pb poisoning and lead‐induced oxidative damage in lead‐exposed mice; the result may provide a theoretical reference for the treatment of Pb poisoning.  相似文献   

17.
Influence of lysine and zinc administration on the lead-sensitive biochemical parameters and the accumulation of lead during exposure to lead or lead and ethanol was investigated in rats. The lead exposure inhibited blood δ-aminolevulinic acid dehydratase (ALAD) activity, increased blood zinc protoporphyrin (ZPP), urinary δ-aminolevulinic acid (ALA), serum glutamic oxalacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), blood and tissue lead levels, and decreased blood and hepatic glutahione (GSH) contents. Some of these effects were enhanced on coexposure to ethanol. The simultaneous administration of lysine and zinc reduced tissue accumulation of lead and most of the lead-induced biochemical alterations irrespective of exposure to lead alone or lead and ethanol. The depletion of endogenous calcium and magnesium owing to lead or ethanol exposure was also prevented by co-administration of lysine and zinc.  相似文献   

18.
Five patients with chronic lead intoxication were treated with S-adenosyl-L-methionine (12 mg/kg body weight, daily), given intravenously, over a period of 22 days. A significant recovery of erythrocytic ALA-D was observed in all cases, after therapy. Blood lead content significantly pathologic at the beginning of SAM administration, rapidly decreased within 24-48 h of initiating treatment, reaching nearly control values at the end of the trial. A good correlation between recovery of ALA-D activity and decreased concentration of lead in RBC was found. GSH content in blood was diminished in lead poisoned patients, increasing to normal levels after SAM administration. Other biochemical parameters such as Deaminase activity in RBC, ALA, PBG, porphyrins and lead in urine and serum gamma-GT were measured, showing no important deviations from control values before, during or after treatment. Both biochemical and clinical improvement was observed, indicating that SAM therapy is beneficial in the treatment of lead intoxication. No untoward signs were observed. The mechanism of action of SAM is not yet clear; however, a chelating effect could be excluded, and very likely its action can be attributed to glutathione availability.  相似文献   

19.
We investigated if IRFI 042, an analog of vitamin E, protects the brain against oxidative stress induced by intraperitoneal administration of Kainic acid (KA) (10 mg/kg); sham brain injury rats were used as controls. Animals received either IRFI 042 (20 mg/kg) or its vehicle 30 min before KA injection and after 6 h were sacrificed to measure malonildyaldheide (MDA) and glutathione levels (GSH) in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of IRFI decreased MDA (micromol/g wet tissue: KA + vehicle = 22.5 ± 4.2; KA + IRFI = 17.1 ± 1; P  < 0.005) and prevented GSH loss (nmol/g wet tissue: KA + vehicle = 0.41 ± 0.1; KA + IRFI = 1.86 ± 0.2; P  < 0.005) in the diencephalon. The latency of occurrence of behavioral signs increased from 39 ± 1 to 62 ± 6 min in IRFI 042 group. The data suggest that IRFI 042 might protect against KA-induced oxidative stress.  相似文献   

20.
T Masukawa  M Sai  Y Tochino 《Life sciences》1989,44(5):311-318
The effect of various reduced glutathione (GSH) depletors on the survival time under normobaric and hypobaric hypoxia was examined in mice. The survival time was markedly prolonged in mice treated with glutathione S-transferase substrate, 2-cyclohexene-1-one (50-100 mg/kg, ip) and phorone (100-250 mg/kg, ip). The anti-hypoxic effect lasted for at least 3 hr and the maximum effect was found 0.5 hr after injection. Further, both compounds significantly elevated blood glucose levels 0.5-1 hr after treatment. The extent of the elevated blood glucose was nearly comparable to that of the mice treated with glucose (1-2 g/kg, ip), which was found to possess an anti-hypoxic effect. However, a GSH synthesis inhibitor, buthionine sulfoximine, could cause neither a prolongation of survival time of hypoxic mice nor an elevation of blood glucose. Moreover, unlike the depletion of hepatic GSH, brain GSH was markedly decreased by 2-cyclohexene-1-one and phorone, but not by buthionine sulfoximine. These findings suggest that the elevated blood glucose may involve in one of the mechanisms of the anti-hypoxic effect of 2-cyclohexene-1-one and phorone. A relationship between the anti-hypoxic effect and the depletion of brain GSH was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号