首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

2.
Interaction of Cu2+ ion with milk xanthine oxidase   总被引:1,自引:0,他引:1  
The interaction of Cu2+ ion with milk xanthine oxidase (XO) has been studied by optical spectroscopy, circular dichroism, ESR and transient kinetic techniques. It is observed that XO forms optically observable complexes with Cu2+ ion. The pH dependence studies of the formation of Cu2+-XO complex by optical spectroscopy and circular dichroism show that at least one ionizable group may be responsible for the formation of the complex. The EPR studies show that Cu2+ ion binds to XO with sulfur and nitrogenous ligands. The transient kinetic study of the interaction of Cu2+ with XO shows the existence of two Cu2+ bound XO complexes formed at two different time scales of the interaction, one at < or =5 ms and the other one at around 20 s. The complex formed at longer time scale may be responsible for the inhibition of the enzyme activity.  相似文献   

3.
The degree of relatedness among mammalian xanthine oxidases (XO) was determined by microcomplement fixation. Rabbit anti bovine milk XO serum was tested against xanthine oxidase (homologous protein) and against the heterologous proteins of bovine liver, monkey liver, rat liver, lactating cow serum, nonlactating cow serum, and steer serum. The indices of dissimilarity for the heterologous proteins were expressed as units of immunological distance and the percent sequence differences among these proteins inferred from the y=5x relationship where y is immunological distance and x is percent sequence difference. Rat liver XO differed by approximately 27% in amino acid sequence from bovine milk XO. In order of increasing immunological distance from bovine milk XO, the sources of XO ranked as follows: lactating cow serum < nonlactating cow serum < steer serum = beef liver < monkey liver < rat liver. The monkey ranked much closer than the rat in order of phylogenetic kinship to the cow. Starch gel electrophoresis of liver, milk, and serum showed that the milk and the serum contained only cationic forms of xanthine oxidase while all the liver samples tested contained cationic as well as anionic forms of the enzyme. The electrophoretic mobility properties of xanthine oxidase confirmed the polymorphic nature of the enzyme as revealed by the immunological data.This investigation was supported by the National Dairy Council, Chicago, Illinois, and by USPHS Grant AM16726.  相似文献   

4.
The nature and mechanism of the inhibition of the oxidoreductase activity of milk xanthine oxidase (XO) by Cu(2+), Hg(2+) and Ag(+) ions has been studied by steady state and stopped flow transient kinetic measurements. The results show that the nature of the inhibition is noncompetitive. The inhibition constants for Cu(2+) and Hg(2+) are in the micromolar and that for Ag(+) is in the nanomolar range. This suggests that the metal ions have strong affinity towards XO. pH dependence studies of the inhibition indicate that at least two ionisable groups of XO are involved in the binding of these metal ions. The effect of the interaction of the metal ions on the reductive and oxidative half reactions of XO has been investigated, and it is observed that the kinetic parameters of the reductive half reaction are not affected by these metal ions. However, the interaction of these metal ions with XO significantly affects the kinetic parameters of the oxidative half reaction. It is suggested that this may be the main cause for the inhibition of XO activity by the metal ions.  相似文献   

5.
Xanthine oxidase (XO) has emerged as an important target for gout. In our previous study, salvianolic acid C (SAC) was found to show potent XO inhibitory activity, whereas the interaction mechanism was still not clear. Herein, an integrated approach consisting of enzyme kinetics, multi-spectroscopic methods and molecular docking was employed to investigate the interaction between SAC and XO. Consequently, SAC exhibited a rapid and mixed-type inhibition of XO with IC50 of 5.84 ± 0.18 μM. The fluorescence data confirmed that SAC presented a strong fluorescence quenching effect through a static quenching procedure. The values of enthalpy change, entropy change and Gibbs free energy change indicated that their binding was spontaneous and driven mainly by hydrophobic interactions. Analysis of synchronous fluorescence, circular dichroism and fourier transform infrared spectra demonstrated that SAC induced conformational changes of the enzyme. Besides, further molecular docking revealed that SAC occupied the catalytic center resulting in the inhibition of XO activity. This study provides a comprehensive understanding on the interaction mechanism of SAC on XO.  相似文献   

6.
Abstract

A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150?kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60?°C and incubated for 60?min. These results indicated that the enzyme was heat stable.  相似文献   

7.
1. Human xanthine oxidase [XO; EC 1.2.3.2.] was isolated by a non-proteolytic method from fresh human milk. Final purification of the protein was achieved by hydroxyapatite chromatography. Most (less than 95%) of the enzyme was released in the 0.40 M phosphate fraction at pH 6.8. 2. The specific activity of this preparation was found to be 0.047 microM min-1 mg-1 with xanthine as substrate. 3. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) separated two subunits, each with a mol. wt approximately 122 kDa. 4. On non-denaturing acrylamide gels both of these subunits exhibited oxidase-like activity with xanthine as substrate in the presence of nitroblue tetrazolium and molecular oxygen. 5. Immunoconjugates of XO were prepared by the keyhole limpet hemocyanin (KLH)- and glutaraldehyde-crosslinking techniques. 6. Polyclonal antibodies to XO were raised by i.m. injection of these conjugates into female New Zealand rabbits. 7. Western blot analysis using the semi-dry technique was employed to confirm the specificity of the antibody.  相似文献   

8.
The aims of this study were to test the hypothesis that the substrates of xanthine oxidase (XO), xanthine and hypoxanthine, are consumed while the milk is stored in the gland between milkings, and to explore how XO activity responds to bacteria commonly associated with subclinical infections in the mammary gland. Freshly secreted milk was obtained following complete evacuation of the gland and induction of milk ejection with oxytocin. In bacteria-free fresh milk xanthine and hypoxanthine were converted to uric acid within 30 min (T1/2 approximately 10 min), which in turn provides electrons for formation of hydrogen peroxide and endows the alveolar lumen with passive protection against invading bacteria. On the other hand, the longer residence time of milk in the cistern compartment was not associated with oxidative stress as a result of XO idleness caused by exhaustion of its physiological fuels. The specific response of XO to bacteria species and the resulting bacteria-dependent nitrosative stress further demonstrates that it is part of the gland immune system.  相似文献   

9.
Enzyme activity can be modulated by the concurrent action of two modifiers, either activators or inhibitors. The kinetic mechanisms for the interaction of the individual modifiers with the target enzyme can change considerably when two modifiers bind simultaneously. We illustrate a general equation for this kind of interactions, which can unambiguously describe the behavior of activators and inhibitors acting by any combination of classical kinetic mechanisms. The flexibility of this model is exemplified by combinations of activators and/or inhibitors, which can be competitive, uncompetitive or mixed-type, bind the target enzyme in either compulsory or random order, and are able to drive or not enzyme activity to zero at saturation. The model shows that the effects of zero-interaction and synergy between simultaneously acting enzyme modifiers are common events. Yet, in disagreement with previous theories, this model shows that antagonism between enzyme modifiers is a rare effect, which can be predicted only under very particular circumstances.  相似文献   

10.
Rats were given a single dose of saline, saline supplemented with xanthine oxidase (XO), half cream and half milk (H/H) and H/H supplemented with XO. XO was determined by a spectrophotometric method at 297 nm in serum at 0, 2, 4 and 6 hours after administration. The method is rapid, reliable and compares favorably with reported assays. No significant difference was obtained between the two saline treatments. The XO activity in serum of animals receiving the H/H increased significantly at 2 hours and then decreased. The H/H supplemented with XO demonstrated a maximum activity in serum at 4 hours and then declined to a value similar to that of the H/H treatment and below the XO level at 0 time. The initial increase in XO activity in serum of rats receiving the H/H treatments may indicate that XO is absorbed in the gastrointestinal tract or that the H/H materials stimulated endogenous XO activity.  相似文献   

11.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

12.
Xanthine oxidase (XO) was found to convert nitric oxide (NO* ) released from spermine-NONOate to nitroxyl (HNO), the one-electron reduction product of NO*, in the presence of its substrate hypoxanthine under anaerobic conditions. Under these conditions, XO lost its activity. Upon aerobic incubation of XO with its substrate, neither conversion of NO* to HNO nor inactivation of the enzyme was observed. Angeli's salt (an HNO generator) or synthetic peroxynitrite inactivated XO at low concentrations, whereas high concentrations of diethylamine-NONOate (an NO* donor) and SIN-1 (which generates peroxynitrite by releasing both NO* and superoxide) were required to inactivate XO. These results suggest that HNO generated by XO under anaerobic conditions inactivates XO. As both XO and NO* synthase are activated and/or induced in ischemia-reperfusion injury, HNO formed by XO may contribute to pathogenesis by exerting its potent oxidation activity against a variety of biological compounds.  相似文献   

13.
Milk xanthine oxidase (xanthine: oxygen oxidore-ductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min?1, determined at pH 7.0 with 1nM XO and all trans-retinaldehyde varying between 0.05 to 2μM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4μM and 2μM allopurinol respectively and inhibited 48% by 10 μM xanthine in enzyme assays performed at 2μM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 μM.  相似文献   

14.
Cell injury from hyperoxia is associated with increased formation of superoxide radicals (O2-). One potential source for O2- radicals is the reduction of molecular O2 catalyzed by xanthine oxidase (XO). Physiologically, this reaction occurs at a relatively low rate, because the native form of the enzyme is xanthine dehydrogenase (XD) which produces NADH instead of O2-. Reports of accelerated conversion of XD to XO, and increased formation of O2- formation in ischemia-reperfusion injury, led us to examine whether hyperoxia, which is known to increase O2- radical formation, is associated with increased lung XO activity, and accelerated conversion of XD to XO. We exposed 3-month-old rats either to greater than 98% O2 or room air. After 48 h, we sacrificed the rats and measured XD and XO activities and uric acid contents of the lungs. We also measured the activities of the two enzymes in the heart as a control organ. We found that the activity of XD was not altered significantly by hyperoxia in rat lungs or hearts, but XO activity was markedly lower in the lung, whether expressed per whole organ or per milligram protein, and remained unchanged in the heart. Lung uric acid content was also significantly lower with hyperoxia. The decrease in lung XO activity may reflect inactivation of the enzyme by reactive O2 metabolites, possibly as a negative feedback mechanism. The concomitant decrease in uric acid content suggests either decreased production mediated by XO due to its inactivation or greater utilization of uric acid as an antioxidant. We examined these postulates in vitro using a xanthine/xanthine oxidase system and found that H2O2, but not uric acid, has an inhibitory effect on O2- formation in the system. We therefore conclude that hyperoxia is not associated with increased conversion of XD to XO, and that the exact contribution of XO to hyperoxic lung injury in vivo remains unclear.  相似文献   

15.
Plasma membrane enriched microsomal fraction was isolated from corn root cells by sucrose density centrifugation. The ATPase activity as measured by the release rate of inorganic phosphate, was decreased by the presence of modifiers which included diethylstilbestrol, vanadate, N,N'-dicyclohexylcarbodiimide, and miconazole. The presence of ADP also decreased the rate of ATP hydrolysis. Furthermore, a preincubation of the membrane with ADP significantly reduced the inhibitory effects of these membrane ATPase modifiers. Since the modes of interaction of these modifiers with the enzyme are different, the results suggest that the binding of ADP may stabilize the plasma membrane ATPase in a modifier insensitive state.  相似文献   

16.
The interaction between milk xanthine oxidase (XO) and lactoperoxidase (LP) in model system and antimicrobial action of these enzymes on Escherichia coli 0-111 were studied. It was shown, that bacterial superoxide dismutase (SOD), which transforms O2-. (XO-reaction product) into H2O2 (substrate of LP), is necessary for binding of the reaction sequence: XO-->LP-->antimicrobial products. It is suggested, that these enzymes unite in the protective system in intestinal infections of newborns. Bacterial SOD in this case acts as the key factor, creating the system.  相似文献   

17.
Xanthine oxidase (XO) and total oxidase plus dehydrogenase (XO+XDH) activities from rat liver were measured in the presence or absence of adenine in extracts prepared with or without DTT/PMSF in homogenization buffer. Presence of adenine in extracts, prepared with or without DTT/PMSF, caused a 45-60% decrease in XO and XO+XDH activities. Removal of adenine by dialysis from extracts prepared with or without DTT/PMSF resulted in the recovery of XO and XO+XDH activities to almost their pre-dialysis control levels. Enzyme activity after 24hr storage at -20 degrees C depended on the presence or absence of DTT/PMSF and adenine, with both XO and XO+XDH activities being lower in extracts with the combined presence of DTT/PMSF and adenine. Incubation of extracts at 37 degrees C for 30 minutes resulted in increased XO and XO+XDH activities, however, adenine-treated samples did not differ from their pre-incubation activities. The molecular mass of the enzyme from control and adenine-treated extracts was unchanged (300 kDa). Adenine-treated extracts prepared with or without DTT/PMSF showed higher D/O ratios in all post-dialysis samples when compared with their pre-dialysis ratios. The results suggest that adenine may play a role in preventing the dehydrogenase to oxidase conversion during extract preparation, storage, overnight dialysis and heat treatment.  相似文献   

18.
Muraoka S  Miura T 《Life sciences》2004,74(13):1691-1700
We examined if phytic acid inhibits the enzymatic superoxide source xanthine oxidase (XO). Half inhibition of XO by phytic acid (IC50) was about 30 mM in the formation of uric acid from xanthine, but generation of the superoxide was greatly affected by phytic acid; the IC50 was about 6 mM, indicating that the superoxide generating domain of XO is more sensitive to phytic acid. The XO activity in intestinal homogenate was also inhibited by phytic acid. However, it was not observed with intestinal homogenate that superoxide generation was more sensitive to phytic acid compared with the formation of uric acid as observed with XO from butter milk. XO-induced superoxide-dependent lipid peroxidation was inhibited by phytic acid, but not by myo-inositol. Reduction of ADP-Fe3+ caused by XO was inhibited by superoxide dismutase, but not phytic acid. The results suggest that phytic acid interferes with the formation of ADP-iron-oxygen complexes that initiate lipid peroxidation. Both phytic acid and myo-inositol inhibited XO-induced superoxide-dependent DNA damage. Mannitol inhibited the DNA strand break. Myo-inositol may act as a hydroxyl radical scavenger. The antioxidative action of phytic acid may be due to not only inhibiting XO, but also preventing formation of ADP-iron-oxygen complexes.  相似文献   

19.
Xanthine oxidase (XO) is conventionally known as a generator of reactive oxygen species (ROS) which contribute to hypoxic-reperfusion injury in tissues. However, this role for human XO is disputed due to its distinctive lack of activity towards xanthine, and the failure of allopurinol to suppress reperfusion injury. In this paper, we have employed native gel electrophore-sis together with activity staining to investigate the role human xanthine dehydrogenase (XD) and XO in hypoxic reperfusion injury. This approach has provided information which cannot be obtained by conventional spectrophotometric assays. We found that both XD and XO of human umbilical vein endothelial cells (HUVECs) and lymphoblastic leukaemic cells (CEMs) catalysed ROS generation by oxidising NADH, but not hypoxanthine. The conversion of XD to XO was observed in both HUVECs and CEMs in response to hypoxia, although the level of conversion varied. Purified human milk XD generated ROS more efficiently in the presence of NADH than in the presence of hypoxanthine. This NADH oxidising activity was blocked by the FAD site inhibitor, diphenyleneiodo-nium (DPI), but was not suppressible by the molybdenum site inhibitor, allopurinol. However, in the presence of both DPI and allopwinol the activities of XD/XO were completely blocked with either NADH or hypoxanthine as substrates. We conclude that both human XD and XO can oxidise NADH to generate ROS. Therefore, the conversion of XD to XO is not necessary for post-ischaemic ROS generation. The hypoxic-reperfusion injury hypothesis should be reappraised to take into account the important role played by XD and XO in oxidising NADH to yield ROS.  相似文献   

20.
Xanthine oxidoreductase (XOR) is a 300-kDa homodimer that can exist as an NAD+-dependent dehydrogenase (XD) or as an O2-dependent oxidase (XO) depending on the oxidation state of its cysteine thiols. Both XD and XO undergo limited cleavage by chymotrypsin and trypsin. Trypsin selectively cleaved both enzyme forms at Lys184, while chymotrypsin cleaved XD primarily at Met181 but cleaved XO at Met181 and at Phe560. Chymotrypsin, but not trypsin, cleavage also prevented the reductive conversion of XO to XD; thus the region surrounding Phe560 appears to be important in the interconversion of the two forms. Size exclusion chromatography showed that disulfide bond formation reduced the hydrodynamic volume of the enzyme, and two-dimensional gel electrophoresis of chymotrypsin-digested XO showed significant, disulfide bond-mediated, conformational heterogeneity in the N-terminal third of the enzyme but no evidence of disulfide bonds between the N-terminal and C-terminal regions or between XOR subunits. These results indicate that intrasubunit disulfide bond formation leads to a global conformational change in XOR that results in the exposure of the region surrounding Phe560. Conformational changes within this region in turn appear to play a critical role in the interconversion between the XD and XO forms of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号