首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Virus-induced gene silencing (VIGS) has great potential as a reverse-genetics tool in plant genomics. In this study, we examined the potential of VIGS in soybean seeds and the emergence stage of soybean plants using Apple latent spherical virus (ALSV) vectors. Inoculation of an ALSV vector (soyPDS-ALSV) carrying a fragment of the soybean phytoene desaturase (soyPDS) gene into soybean seedlings resulted in a highly uniform photo-bleached phenotype, typical of PDS inhibition, on the upper leaves throughout plant growth. The photo-bleached phenotype was also found on all immature pods, all seed coats, and about 50% embryos of seeds on soybean plants infected with soyPDS-ALSV. Infection with an ALSV vector (soyIFS2-ALSV) having a fragment of soybean isoflavone synthase 2 (soyIFS2) gene also led to a reduction of the levels of both soyIFS2- and soyIFS1- mRNAs and an isoflavone content in the cotyledons of about 36% mature seeds of infected soybean plants. Furthermore, VIGS of soyPDS was induced in the next generation plants by the seed transmission of soyPDS-ALSV. Thus ALSV vectors will be useful for studying gene functions in the reproductive stages and early growth stages, such as emergence and cotyledon stages, in addition to the vegetative stages of soybean plants.  相似文献   

3.
4.
The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.  相似文献   

5.
Inositol polyphosphates are a family of inositol derivatives and ubiquitously distributed in various organisms. Their generation is catalyzed by inositol polyphosphate multikinases, which play essential roles in abundant cellular processes. However, little is known about the kinds and functions of inositol polyphosphate multikinases in the important fungal pathogen, C. albicans. In this study, we identified a C. albicans inositol polyphosphate multikinase, Ipk2. This kinase shares the conserved IPK domain and localizes in the nucleus. A strain with controllable expression of IPK2 was constructed using the inducible promoter of MET3. Down-regulation of IPK2 by addition of methionine and cysteine enhanced the ability of hyphal development, increased expression of hypha-specific genes and promoted transport of hypha-specific factors. Moreover, this down-regulation rendered increase in cytoplasmic calcium levels but decrease in cellular total calcium contents, indicating its role in regulation of calcium homeostasis. Assays of secretion and macrophage killing further demonstrated that Ipk2 negatively regulated secretion of degradative enzymes and damage to macrophages. This study sheds a novel light on the functions of inositol polyphosphate multikinases in fungal organisms.  相似文献   

6.
Phytate (myo-inositol hexakisphosphate), the major form of phosphorous storage in plant seeds, is an inositol phosphate compound poorly digested by humans and monogastric animals. A major goal for grain crop improvement is the reduction of its content in the seed to improve micronutrient bioavailability and phosphorus utilisation by humans and non-ruminant animals, respectively. We are interested in lowering phytic acid in common bean seed and to this goal we have undertaken a two-strategy approach: the isolation of mutants from an EMS mutagenised population (Campion et al. 2009) and the identification of genes coding for candidate enzymes involved in inositol phosphate metabolism for future targeted mutant isolation and/or study. In this paper we report data referred to the second approach and concerning the isolation and genomic organisation of Phaseolus vulgaris genes coding for myo-inositol 1-phosphate synthase (PvMIPSs and PvMIPSv), inositol monophosphatase (PvIMP), myo-inositol kinase (PvMIK), inositol 1,4,5-tris-phosphate kinase (PvIPK2), inositol 1,3,4-triphosphate 5/6-kinase (PvITPKα and PvITPKβ) and inositol 1,3,4,5,6 pentakisphosphate 2-kinase (PvIPK1). All these genes have been mapped on the common bean reference genetic map of McClean (NDSU) 2007 using a virtual mapping strategy. Bean markers, presumably associated to each gene of the phytic acid pathway, have also been identified. In addition, we provide a picture of the expression, during seed development, of the genes involved in phytic acid synthesis, including those such as MIK, IMP and IPK2, for which this information was lacking.  相似文献   

7.
8.
9.
J.T. Moraghan 《Plant and Soil》2004,264(1-2):287-297
The influence of times of applying FeEDDHA on seed yield and Fe accumulation by four common bean (Phaseolus vulgaris L.) and two soybean (Glycine max L.) genotypes grown on a calcareous soil was studied under greenhouse conditions. The soybean genotypes, unlike the common bean genotypes, developed Fe-deficiency chlorosis and responded to application of the chelate. A preplant application of FeEDDHA was more efficacious than a flowering application in increasing seed yield of soybean. In contrast, the flowering application was much more effective than the preplant application for increasing seed Fe concentration [Fe] of both species. Percentage of seed Fe located in the seed coat of the common bean genotypes ranged from approximately 5 to 40% and was little affected by FeEDDHA. This within-seed distribution of Fe was correlated with methanol-extractable seed-coat pigments absorbing at 500 nm, presumably anthocyanins, but not with condensed tannins (proanthocyanidins). The soybean genotypes did not accumulate anthocyanins or tannins in the seed coat. Seed of Fe-deficient soybean plants without FeEDDHA had appreciably lower [Fe] and had a lower percentage of seed Fe in the seed coat than treated plants. Within-seed distribution of Fe should be considered in plant breeding because of concerns about both human nutrition and early seedling growth. Abbreviations: DTPA – diethylenetrinitrilopentaacetic acid; EDDHA – ethylenediamine di(o-hydroxyphenylacetic acid) acid; SPAD – single photon avalanche diode  相似文献   

10.
Gibberellic acid (GA) is an important plant hormone mediating plant growth and development throughout the life span. Although many GA biosynthesis genes and signaling components have been revealed, the signal transduction mechanisms from GA perception to physiological actions are still largely unclear. In this study, we investigated the functions of a rice (Oryza sativa) inositol polyphosphate kinase gene (OsIPK2) in rice growth and development, showing that OsIPK2 is a putative new player in GA signaling. OsIPK2 is widely expressed in rice with high accumulation in tender and rapidly dividing tissues. The OsIPK2 protein is mainly localized in the nucleus and plasma membrane. To study the biological roles of OsIPK2 in rice, RNA interference and overexpression transgenic plants were generated. OsIPK2 antisense plants exhibited taller seedling height and lower fertility rate than the wild type, while overexpression lines showed reduced plant height. Microarray and qRT-PCR assays showed that expression levels of several GA-related genes were altered in transgenic plants. Besides, down-regulation of OsIPK2 resulted in hypersensitivity to paclobutrazol (PAC), a GA biosynthesis inhibitor. We also described that the expression of OsIPK2 could be either induced by GA or repressed by PAC. Taken together, these findings suggested that OsIPK2 is likely a negative regulator of GA signaling and involves in modulating shoot elongation and fertility.  相似文献   

11.
Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2β) in two heterologous systems, i.e. the yeast Saccharomyces cerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2β rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Δ) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2β under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2β in plant stress responses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is an important constituent of soybean meal. Since phytic acid and its mineral salts (phytates) are almost indigestible for monogastrics, their abundance in grain food/feed causes nutritional and environmental problems; interest in breeding low phytic acid has therefore increased considerably. Based on gene mapping and the characteristics of inositol polyphosphates profile in the seeds of a soybean mutant line Gm-lpa-ZC-2, the soybean ortholog of inositol 1,3,4,5,6 pentakisphosphate (InsP5) 2-kinase (IPK1), which transforms InsP5 into phytic acid, was first hypothesized as the candidate gene responsible for the low phytic acid alteration in Gm-lpa-ZC-2. One IPK1 ortholog (Glyma14g07880, GmIPK1) was then identified in the mapped region on chromosome 14. Sequencing revealed a G?→?A point mutation in the genomic DNA sequence and the exclusion of the entire fifth exon in the cDNA sequence of GmIPK1 in Gm-lpa-ZC-2 compared with its wild-type progenitor Zhechun No. 3. The excluded exon encodes 37 amino acids that spread across two conserved IPK1 motifs. Furthermore, complete co-segregation of low phytic acid phenotype with the G?→?A mutation was observed in the F2 population of ZC-lpa x Zhexiandou No. 4 (a wild-type cultivar). Put together, the G?→?A point mutation affected the pre-mRNA splicing and resulted in the exclusion of the fifth exon of GmIPK1 which is expected to disrupt the GmIPK1 functionality, leading to low phytic acid level in Gm-lpa-ZC-2. Gm-lpa-ZC-2, would be a good germplasm source in low phytic acid soybean breeding.  相似文献   

13.
14.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3′-phosphoadenosine 5′-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3′-phosphoadenosine 5′-phosphate phosphatase. Based on this fact, we found that 3′-phosphoadenosine 5′-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3′-phosphoadenosine 5′-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   

15.
16.
The energy allocation for vegetative and reproductive growth is regulated by developmental signals and environmental cues, which subsequently affects seed output. However, the molecular mechanism underlying how plants coordinate yield-related traits to control yield in changing source–sink relationships remains largely unknown. Here, we discovered the lectin receptor-like kinase LecRK-VIII.2 as a specific receptor-like kinase that coordinates silique number, seed size, and seed number to determine seed yield in Arabidopsis (Arabidopsis thaliana). The lecrk-VIII.2 mutants develop smaller seeds, but more siliques and seeds, leading to increased yield. In contrast, the plants overexpressing LecRK-VIII.2 form bigger seeds, but less siliques and seeds, which results in similar yield to that of wild-type plants. Interestingly, LecRK-VIII.2 promotes the growth of the rosette, root, and stem by coordinating the source–sink relationship. Additionally, LecRK-VIII.2 positively regulates cell expansion and proliferation in the seed coat, and maternally controls seed size. The genetic and biochemical analyses demonstrated that LecRK-VIII.2 acts upstream of the mitogen-activated protein kinase (MAPK) gene MPK6 to regulate silique number, seed size, and seed number. Collectively, these findings uncover LecRK-VIII.2 as an upstream component of the MAPK signaling pathway to control yield-related traits and suggest its potential for crop improvement aimed at developing plants with stable yield, a robust root system, and improved lodging resistance.

A lectin receptor-like kinase regulates yield-related traits and coordinates the source–sink relationship in Arabidopsis.  相似文献   

17.
To develop the potential of plants to sequester and accumulate mercurials from the contaminated sites, we engineered a tobacco (Nicotiana tabacum) plant to express a bacterial ppk gene, encoding polyphosphate kinase (PPK), under control of a plant promoter. The designated plant expression plasmid pPKT116 that contains the entire coding region of ppk was used for Agrobacterium-mediated gene transfer into tobacco plants. A large number of independent transgenic tobacco plants were obtained, in some of which the ppk gene was stably integrated in the plant genome and substantially translated to the expected PPK protein in the transgenic tobacco. The presence of Hg2+ did not cause considerable morphological abnormalities in the transgenic tobacco, which grew, flowered, and set seed similarly to the wild-type tobacco on the medium containing normally toxic levels of Hg2+. The ppk-transgenic tobacco showed more resistance to Hg2+ and accumulated more mercury than its wild-type progenitors. These results suggest that ppk-specified polyphosphate has abilities to reduce mercury toxicity, probably via chelation mechanism, and also to accumulate mercury in the transgenic tobacco. Based on the results obtained in the present study, the expression of ppk gene in transgenic tobacco plants might provide a means for phytoremediation of mercury pollution.  相似文献   

18.
Seed storage oil, in the form of triacylglycerol (TAG), is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid β-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL) is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525). Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the β-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination.  相似文献   

19.
Improving crop tolerance to osmotic stresses is a longstanding goal of agricultural biotechnology. In the present work the PcINO1 gene coding for a salt-tolerant L-myo-inositol-1-phosphate synthase (MIPS) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice was introgressed into cultivated mustard, Brassica juncea var B85. The transgenic plants demonstrate increased tolerance to salinity and oxidative stress with elevated level of inositol in both roots and shoots. The yield and crop quality of transgenic Brassica plants remain uncompromised and the plants were able to stably grow, set seeds and germinate in saline environments. When targeted to seeds of Nicotiana, PcINO1 was able to improve the seed survival rate under salinity and dehydration. Inositol and its derivatives regulate stress responses in various ways, serving as compatible solutes or signaling molecules. It is implicated that engineering inositol metabolism may affect the plant metabolic network leading to a stress tolerant phenotype as enumerated here in transgenic crop plants. How inositol itself or its derivatives affect the overall metabolic pathways leading to a stress-tolerant phenotype remains an intriguing question for future investigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号