首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor is a ligand-gated Ca(2+) channel playing an important role in the control of intracellular Ca(2+). In the study presented here, we demonstrate that angiotensin (AngII), phorbol ester (PMA), and FK506 significantly increase the level of InsP(3) receptor phosphorylation in intact bovine adrenal glomerulosa cells. With a back-phosphorylation approach, we showed that the InsP(3) receptor is a good substrate for protein kinase C (PKC) and that FK506 increases the level of PKC-mediated InsP(3) receptor phosphorylation. With a microsomal preparation from bovine adrenal cortex, we showed that PKC enhances the release of Ca(2+) induced by a submaximal dose of InsP(3). We also showed that FK506 blocks intracellular Ca(2+) oscillations in isolated adrenal glomerulosa cells by progressively increasing the intracellular Ca(2+) concentration to a high plateau level. This effect is consistent with an inhibitory role of FK506 on calcineurin dephosphorylation of the InsP(3) receptor, thus keeping the receptor in a phosphorylated, high-conductance state. Our results provide further evidence for the crucial role of the InsP(3) receptor in the regulation of intracellular Ca(2+) oscillations and show that FK506, by maintaining the phosphorylated state of the InsP(3) receptor, causes important changes in the Ca(2+) oscillatory process.  相似文献   

2.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

3.
Cooling can induce Ca(2+) signaling via activation of temperature-sensitive ion channels such as TRPM8, TRPA1 and ryanodine receptor channels. Here we have studied the mechanism of cooling-evoked Ca(2+) signaling in mouse olfactory ensheathing cells (OECs), a specialized type of glial cells in the olfactory nerve layer of the olfactory bulb. Reducing the temperature from above 30°C to 28°C and below triggered Ca(2+) transients that persisted in the absence of external Ca(2+), but were suppressed after Ca(2+) store depletion by cyclopiazonic acid. Cooling-evoked Ca(2+) transients were present in mice deficient of TRPM8 and TRPA1, and were not inhibited by ryanodine receptor antagonists. Inhibition of InsP(3) receptors with 2-APB and caffeine entirely blocked cooling-evoked Ca(2+) transients. Moderate Ca(2+) increases, as evoked by flash photolysis of NP-EGTA (caged Ca(2+)) and cyclopiazonic acid, triggered InsP(3) receptor-mediated Ca(2+) release at 22°C, but not at 31°C. The results suggest that InsP(3) receptors mediate Ca(2+)-induced Ca(2+) release in OECs, and that this Ca(2+) release is temperature-sensitive and can be suppressed at temperatures above 28°C.  相似文献   

4.
Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3-4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2(+)-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+]i changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

5.
Fertilization in mammals stimulates a series of Ca(2+) oscillations that continue for 3-4 h. Cell-cycle-dependent changes in the ability to release Ca(2+) are one mechanism that leads to the inhibition of Ca(2+) transients after fertilization. The downregulation of InsP(3)Rs at fertilization may be an additional mechanism for inhibiting Ca(2+) transients. In the present study we examine the mechanism of this InsP(3)R downregulation. We find that neither egg activation nor Ca(2+) transients are necessary or sufficient for the stimulation of InsP(3)R downregulation. First, parthenogenetic activation fails to stimulate downregulation. Second, downregulation persists when fertilization-induced Ca(2+) transients and egg activation are inhibited using BAPTA. Third, downregulation can be induced in immature oocytes that do not undergo egg activation. Other than fertilization, the only stimulus that downregulated InsP(3)Rs was microinjection of the potent InsP(3)R agonist adenophostin A. InsP(3)R downregulation was inhibited by the cysteine protease inhibitor ALLN but MG132 and lactacystin were not effective. Finally, we have injected maturing oocytes with adenophostin A and produced MII eggs depleted of InsP(3)Rs. We show that sperm-induced Ca(2+) signaling is inhibited in such InsP(3)R-depleted eggs. These data show that InsP(3)R binding is sufficient for downregulation and that Ca(2+) signaling at fertilization is mediated via the InsP(3)R.  相似文献   

6.
The sulfhydryl reagent thimerosal enhanced the sensitivity of hamster eggs to injected inositol 1,4,5-trisphosphate (InsP3) or Ca2+ to generate regenerative Ca2+ release from intracellular pools. A monoclonal antibody (mAb) to the InsP3 receptor blocked both the InsP3-induced Ca2+ release (IICR) and Ca(2+)-induced Ca2+ release (CICR). The mAb also blocked Ca2+ oscillations induced by thimerosal. The results indicate that thimerosal enhances IICR sensitized by cytosolic Ca2+, but not CICR from InsP3-insensitive pools, and causes repetitive Ca2+ releases from InsP3-sensitive pools.  相似文献   

7.
Adrenal chromaffin cells secrete catecholamines in response to cholinergic receptor activation by acetylcholine (ACh). Characteristics of Ca(2+) transients induced by activation of nicotinic (nAChRs) and muscarinic (mAChRs) receptors were analyzed using Fura-2 fluorescent measurements on rat chromaffin cells. We first found two populations of chromaffin cells, which differently responded on AChR stimulation. In the first group (n-cells), consecutive ACh applications evoked persistent Ca(2+) transients, whereas desensitizing transients were observed in the other group (m-cells). The AChR agonists and antagonists precisely imitated or abolished the ACh action on n- and m-type cells, respectively. Cytochemical staining showed that n-cells contained adrenaline, whereas m-cells-noradrenaline. Thus, for the first time we found that nAChRs and mAChRs are differentially expressed in adrenergic and noradrenergic chromaffin cells, respectively. Our data suppose that chromaffin cells can be differentially regulated by incoming ACh signals and in such way release different substances-adrenaline and noradrenaline.  相似文献   

8.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

9.
Store-operated channels (SOCs) provide an important means for mediating longer-term Ca(2+) signals and replenishment of Ca(2+) stores in a multitude of cell types. However, the coupling mechanism between endoplasmic reticulum stores to activate plasma membrane SOCs remains unknown. In DT40 chicken B lymphocytes, the permeant inositol trisphosphate receptor (InsP(3)R) modifier, 2-aminoethoxydiphenyl borate (2-APB), was a powerful activator of store-operated Ca(2+) entry between 1-10 microm. 2-APB activated authentic SOCs because the entry was totally selective for Ca(2+) (no detectable entry of Ba(2+) or Sr(2+) ions), and highly sensitive to La(3+) ions (IC(50) 30-100 nm). To assess the role of InsP(3)Rs in this response, we used the DT40 triple InsP(3)R-knockout (ko) cell line, DT40InsP(3)R-ko, in which the absence of full-length InsP(3)Rs or InsP(3)R fragments was verified by Western analysis using antibodies cross-reacting with N-terminal epitopes of all three chicken InsP(3)R subtypes. The 2-APB-induced activation of SOCs was identical in the DT40InsP(3)R-ko, cells indicating InsP(3)Rs were not involved. With both wild type (wt) and ko DT40 cells, 2-APB had no effect on Ca(2+) entry in store-replete cells, indicating that its action was restricted to SOCs in a store-coupled state. 2-APB induced a robust activation of Ca(2+) release from stores in intact DT40wt cells but not in DT40InsP(3)R-ko cells, indicating an InsP(3)R-mediated effect. In contrast, 2-APB blocked InsP(3)Rs in permeabilized DT40wt cells, suggesting that the stimulatory action of 2-APB was restricted to functionally coupled InsP(3)Rs in intact cells. Uncoupling of ER/PM interactions in intact cells by calyculin A-induced cytoskeletal rearrangement prevented SOC activation by store-emptying and 2-APB; this treatment completely prevented 2-APB-induced InsP(3)R activation but did not alter InsP(3)R activation mediated by phospholipase C-coupled receptor stimulation. The results indicate that the robust bifunctional actions of 2-APB on both SOCs and InsP(3)Rs are dependent on the coupled state of these channels and suggest that 2-APB may target the coupling machinery involved in mediating store-operated Ca(2+) entry.  相似文献   

10.
Inositol 1,4,5-trisphosphate (InsP(3)) and cAMP are the two second messengers that play an important role in neuronal signaling. Here, we investigated the interactions of InsP(3)- and cAMP-mediated signaling pathways activated by dopamine in striatal medium spiny neurons (MSN). We found that in approximately 40% of the MSN, application of dopamine elicited robust repetitive Ca(2+) transients (oscillations). In pharmacological experiments with specific agonists and antagonists, we found that the observed Ca(2+) oscillations were triggered by activation of D1 class dopamine receptors (DARs). We further demonstrated that activation of phospholipase C was required for induction of dopamine-induced Ca(2+) oscillations and that maintenance of dopamine-evoked Ca(2+) oscillations required both Ca(2+) influx and Ca(2+) mobilization from internal Ca(2+) stores. In "priming" experiments with a type 2 5-hydroxytryptamine receptor agonist, we have shown a likely role for calcyon in coupling D1 class DARs with Ca(2+) oscillations in MSN. In experiments with the DAR-specific agonist SKF83959, we discovered that phospholipase C activation alone could not account for dopamine-induced Ca(2+) oscillations. We further demonstrated that direct activation of protein kinase A by 8-bromo-cAMP or inhibition of protein phosphatase-1 (PP1) or calcineurin (PP2B) resulted in elevation of basal Ca(2+) levels in MSN, but not in Ca(2+) oscillations. In experiments with competitive peptides, we have shown an importance of type 1 InsP(3) receptor association with PP1alpha and with AKAP9.protein kinase A for dopamine-induced Ca(2+) oscillations. In experiments with MSN from DARPP-32 knock-out mice, we demonstrated a regulatory role of DARPP-32 in dopamine-induced Ca(2+) oscillations. Our results indicate that, following D1 class DAR activation, InsP(3) and cAMP signaling pathways converge on the type 1 InsP(3) receptor, resulting in Ca(2+) oscillations in MSN.  相似文献   

11.
The ubiquitous inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel is engaged by thousands of plasma membrane receptors to generate Ca(2+) signals in all cells. Understanding how complex Ca(2+) signals are generated has been hindered by a lack of information on the kinetic responses of the channel to its primary ligands, InsP(3) and Ca(2+), which activate and inhibit channel gating. Here, we describe the kinetic responses of single InsP(3)R channels in native endoplasmic reticulum membrane to rapid ligand concentration changes with millisecond resolution, using a new patch-clamp configuration. The kinetics of channel activation and deactivation showed novel Ca(2+) regulation and unexpected ligand cooperativity. The kinetics of Ca(2+)-mediated channel inhibition showed the single-channel bases for fundamental Ca(2+) release events and Ca(2+) release refractory periods. These results provide new insights into the channel regulatory mechanisms that contribute to complex spatial and temporal features of intracellular Ca(2+) signals.  相似文献   

12.
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.  相似文献   

13.
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.  相似文献   

14.
Cytosolic Ca(2+) is a versatile second messenger that can regulate multiple cellular processes simultaneously. This is accomplished in part through Ca(2+) waves and other spatial patterns of Ca(2+) signals. To investigate the mechanism responsible for the formation of Ca(2+) waves, we examined the role of inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms in Ca(2+) wave formation. Ca(2+) signals were examined in hepatocytes, which express the type I and II InsP3R in a polarized fashion, and in AR4-2J cells, a nonpolarized cell line that expresses type I and II InsP3R in a ratio similar to what is found in hepatocytes but homogeneously throughout the cell. Expression of type I or II InsP3R was selectively suppressed by isoform-specific DNA antisense in an adenoviral delivery system, which was delivered to AR4-2J cells in culture and to hepatocytes in vivo. Loss of either isoform inhibited Ca(2+) signals to a similar extent in AR4-2J cells. In contrast, loss of the basolateral type I InsP3R decreased the sensitivity of hepatocytes to vasopressin but had little effect on the initiation or spread of Ca(2+) waves across hepatocytes. Loss of the apical type II isoform caused an even greater decrease in the sensitivity of hepatocytes to vasopressin and resulted in Ca(2+) waves that were much slower and delayed in onset. These findings provide evidence that the apical concentration of type II InsP3Rs is essential for the formation of Ca(2+) waves in hepatocytes. The subcellular distribution of InsP3R isoforms may critically determine the repertoire of spatial patterns of Ca(2+) signals.  相似文献   

15.
Endothelin-1 (ET-1) is a potent G(q)-coupled agonist with important physiological effects on the heart. In the present study, we characterised the effect of prolonged ET-1 stimulation on Ca(2+) signalling within acutely isolated atrial myocytes. ET-1 induced a reproducible and complex sequence of effects, including negative inotropy, positive inotropy and pro-arrhythmic spontaneous Ca(2+) transients (SCTs). The negative and positive inotropic effects correlated with the ability of Ca(2+) to propagate from the subsarcolemmal sites where EC-coupling initiates into the centre of the atrial cells. We examined the spatial and temporal properties of the SCTs and observed them to range from elementary Ca(2+) sparks, flurries of Ca(2+) sparks, to Ca(2+) waves and action potential-evoked global Ca(2+) transients. The positive inotropic effect of ET-1 and its ability to trigger SCTs were mimicked by direct stimulation of InsP(3)Rs. An antagonist of InsP(3)Rs prevented the generation of SCTs and partially reduced the positive inotropy evoked by ET-1. Our data suggest that ET-1 engages multiple signal transduction pathways to provoke a plethora of different responses within an atrial myocyte. Some of the actions of ET-1 appear to be due to stimulation of InsP(3)Rs.  相似文献   

16.
Among rat peripheral tissues examined, Ins(1,4,5)P(3) receptor binding is highest in the vas deferens, with levels about 25% of those of the cerebellum. We have purified the InsP(3) receptor binding protein from rat vas deferens membranes 600-fold. The purified protein displays a single 260 kDa band on SDS/PAGE, and the native protein has an apparent molecular mass of 1000 kDa, the same as in cerebellum. The inositol phosphate specificity, pH-dependence and influence of various reagents are the same for purified vas deferens and cerebellar receptors. Whereas particulate InsP(3) binding in cerebellum is potently inhibited by Ca(2+), particulate and purified vas deferens receptor binding of InsP(3) is not influenced by Ca(2+). Vas deferens appears to lack calmedin activity, but the InsP(3) receptor is sensitive to Ca(2+) inhibition conferred by brain calmedin. The vas deferens may prove to be a valuable tissue for characterizing functional aspects of InsP(3) receptors.  相似文献   

17.
Regulation of Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)R) has important consequences for defining the particular spatio-temporal properties of intracellular Ca(2+) signals. In this study, regulation of Ca(2+) release by phosphorylation of type 1 InsP(3)R (InsP(3)R-1) was investigated by constructing "phosphomimetic" charge mutations in the functionally important phosphorylation sites of both the S2+ and S2- InsP(3)R-1 splice variants. Ca(2+) release was investigated following expression in Dt-40 3ko cells devoid of endogenous InsP(3)R. In cells expressing either the S1755E S2+ or S1589E/S1755E S2- InsP(3)R-1, InsP(3)-induced Ca(2+) release was markedly enhanced compared with nonphosphorylatable S2+ S1755A and S2- S1589A/S1755A mutants. Ca(2+) release through the S2- S1589E/S1755E InsP(3)R-1 was enhanced approximately 8-fold over wild type and approximately 50-fold when compared with the nonphosphorylatable S2- S1589A/S1755A mutant. In cells expressing S2- InsP(3)R-1 with single mutations in either S1589E or S1755E, the sensitivity of Ca(2+) release was enhanced approximately 3-fold; sensitivity was midway between the wild type and the double glutamate mutation. Paradoxically, forskolin treatment of cells expressing either single Ser/Glu mutation failed to further enhance Ca(2+) release. The sensitivity of Ca(2+) release in cells expressing S2+ S1755E InsP(3)R-1 was comparable with the sensitivity of S2- S1589E/S1755E InsP(3)R-1. In contrast, mutation of S2+ S1589E InsP(3)R-1 resulted in a receptor with comparable sensitivity to wild type cells. Expression of S2- S1589E/S1755E InsP(3)R-1 resulted in robust Ca(2+) oscillations when cells were stimulated with concentrations of alpha-IgM antibody that were threshold for stimulation in S2- wild type InsP(3)R-1-expressing cells. However, at higher concentrations of alpha-IgM antibody, Ca(2+) oscillations of a similar period and magnitude were initiated in cells expressing either wild type or S2- phosphomimetic mutations. Thus, regulation by phosphorylation of the functional sensitivity of InsP(3)R-1 appears to define the threshold at which oscillations are initiated but not the frequency or amplitude of the signal when established.  相似文献   

18.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Confocal laser scanning microscopy and fluo 4 were used to visualize local and whole cell Ca(2+) transients within individual smooth muscle cells (SMC) of intact, pressurized rat mesenteric small arteries during activation of alpha1-adrenoceptors. A method was developed to record the Ca(2+) transients within individual SMC during the changes in arterial diameter. Three distinct types of "Ca(2+) signals" were influenced by adrenergic activation (agonist: phenylephrine). First, asynchronous Ca(2+) transients were elicited by low levels of adrenergic stimulation. These propagated from a point of origin and then filled the cell. Second, synchronous, spatially uniform Ca(2+) transients, not reported previously, occurred at higher levels of adrenergic stimulation and continued for long periods during oscillatory vasomotion. Finally, Ca(2+) sparks slowly decreased in frequency of occurrence during exposure to adrenergic agonists. Thus adrenergic activation causes a decrease in the frequency of Ca(2+) sparks and an increase in the frequency of asynchronous wavelike Ca(2+) transients, both of which should tend to decrease arterial diameter. Oscillatory vasomotion is associated with spatially uniform synchronous oscillations of cellular [Ca(2+)] and may have a different mechanism than the asynchronous, propagating Ca(2+) transients.  相似文献   

20.
Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号