共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Tomaz Henrique Araújo Flavio Pavla de Faria Eduardo Katchburian Edna Freymüller Haapalainen 《Acta zoologica》2010,91(4):440-446
Araújo, T.H., Faria, F.P., Katchburian, E. and Freymüller, E. (2009). Ultrastructural changes in skeletal muscle of the tail of the lizard Hemidactylus mabouia immediately following autotomy. —Acta Zoologica (Stockholm) 91 : 440–446. Although autotomy and subsequent regeneration of lizard tails has been extensively studied, there is little information available on ultrastructural changes that occur to the muscle fibers at the site of severance. Thus, in the present study, we examine the ultrastructure of the musculature of the remaining tail stump of the lizard Hemidactylus mabouia immediately after autotomy. Our results show that exposed portions of the skeletal muscle fibers of the stump that are unprotected by connective tissue bulge to produce large mushroom‐like protrusions. These exposed portions show abnormal structure but suffer no leakage of cytoplasmic contents. Many small and large vesicular structures appeared between myofibrils in the interface at this disarranged region (distal) and the other portion of the fibers that remain unchanged (proximal). These vesicles coalesce, creating a gap that leads to the release of the mushroom‐like protrusion. So, our results showed that after the macroscopic act of autotomy the muscular fibers release part of the sarcoplasm as if a second and microscopic set of autotomic events takes place immediately following the macroscopic act of autotomy. Presumably these changes pave the way for the formation of a blastema and the beginning of regeneration. 相似文献
6.
In vitro myogenesis of promuscle cells from the regenerating tail of the lizard, Anolis carolinensis 总被引:2,自引:0,他引:2
P G Cox 《Journal of morphology》1968,126(1):1-18
7.
Fine observation on nerves colonizing the regenerating tail of the lizard Podarcis sicula 总被引:1,自引:0,他引:1
During the regeneration of lizard tail, nerves sprouting from ganglia and the spinal cord invade the blastema as far as the apical epidermis. Electron microscopical observations reveal axons storing dense granules (dg) and dense core vesicles (dcv) which are concentrated in nerve terminals or in axoplasmatic regions. In the regenerating spinal cord (SC) these terminals resemble aminergic-peptidergic endings and grow as far as the distal portion of the SC, which is made up of irregularly arranged ependymal cells. Some axons storing dcv contact blastematic cells and other nerve terminals show a plasma membrane incomplete or broken. Whether this latter aspect is due to fixation artifacts or physiological rupture is unknown. Nerves containing dcv and a few dg also originate from spinal ganglia innervating the regenerating tail. The accumulation of material into these endings is probably slow and a possible trophic influence on the regeneration of lizard tail is discussed. 相似文献
8.
9.
Alibardi L Toni M 《Journal of experimental zoology. Part A, Comparative experimental biology》2005,303(10):845-860
The keratin cytoskeleton of the wound epidermis of lizard limb (which does not regenerate) and tail (which regenerates) hase been studied by qualitative ultrastructural, immunocytochemical, and immunoblotting methods. The process of re-epithelialization is much shorter in the tail than in the limb. In the latter, a massive tissue destruction of bones, and the shrinkage of the old skin over the stump surface, delay wound closure, maintain inflammation, reduce blastemal cell population, resulting in inhibition of regeneration. The expression of special wound keratins found in the newt epidermis (W6) or mammalian epidermis (K6, K16, and K17) is present in the epidermis of both tail and limb of the lizard. These keratins are not immunolocalized in the migrating epithelium or normal (resting) epidermis but only after it has formed the thick wound epithelium, made of lacunar cells. The latter are proliferating keratinocytes produced during the cyclical renewal or regeneration of lizard epidermis. W6-immunolabeled proteic bands mainly at 45-47 kDa are detected by immunoblotting in normal, regenerating, and scarring epidermis of the tail and limb. Immunolabeled proteic bands at 52, 62-67 kDa (with K6), at 44-47, 60, 65 kDa (with K16), and at 44-47 kDa (with K17) were detected in normal and regenerating epidermis. It is suggested that: (1) these keratins constitute normal epidermis, especially where the lacunar layer is still differentiating; (2) the wound epidermis is similar in the limb and tail in terms of morphology and keratin content; (3) the W6 antigen is similar to that of the newt, and is associated with tonofilaments; (4) lizard K6 and K17 have molecular weights similar to mammalian keratins; (5) K16 shows some isoforms or degradative products with different molecular weight from those of mammals; (6) K17 increases in wound keratinocytes and localizes over sparse filaments or small bundles of short filaments, not over tonofilaments joined to desmosomes; and (7) failure of limb regeneration in lizards may not depend on the wound reaction of keratinocytes. 相似文献
10.
The concentration of ascorbic acid (AA) and the histochemical distribution of this vitamin together with cytochrome oxidase have been investigated in the normal and regenerating tail of the Scincid lizard, Mabuya carinata. An interesting aspect of this investigation is the observation of a total lack of cytochrome oxidase in both the normal and regenerating tail of the lizard, except for the differentiating phase. On the other hand, AA has been found to be present in the normal and regenerating tail with above normal levels during wound healing (twofold) and differentiation (fivefold). In the light of the poor cytochrome oxidase activity, the higher content of AA noted during regeneration has been construed to play a possible role in the respiratory mechanics of the regenerating lizard tail. Further, the importance of AA in cellular metabolism and the wound healing and differentiative processes have also been discussed. 相似文献
11.
12.
The uninjured caudal skeletal muscle of two lizards, Lygosoma and Anolis, contains satellite cells. The satellite cell nuclei constitute 7.5% and 4.8% of the combined satellite and muscle nuclei, in Lygosoma and Anolis, respectively. 相似文献
13.
14.
15.
16.
Adult Indian wall lizards, Hemidactylus flaviviridis (Rüppell) with seasonally quiescent ovaries were treated either with ovine FSH or LH. Quantitative as well as histochemical observations revealed that only FSH could stimulate the ovarian growth and steroidogenesis whereas LH had no effect either on ovarian growth or on ovarian steroidogenesis. 相似文献
17.
18.
Doughty P Shine R Lee MS 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2003,135(2):215-219
Most species of lizards will shed their tails at the point of contact when grasped by a predator. We investigated the energetic consequences of tail loss by measuring lipids in a scincid lizard that stores energy in its tail for reproduction. Most of the lipids were concentrated in the proximal portion of the tail. Thus, partial tail loss may not severely affect energy stores if the distal portion of the tail is shed in predatory encounters. We also found that the width of the tail was a reliable non-invasive index of energy reserves in this species. 相似文献
19.
20.
A proximo-distal gradient of reduced glutathione (GSH), a non enzymatic antioxidant was observed in the original tails of the lizard, H. leschenaultii. In the regenerating tails, a gradual increase in the level of GSH was noted with tail elongation. In the newly regenerated tails also the level of GSH remained higher in the proximal part than the corresponding distal parts. 相似文献