首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ability of indigenous populations of microorganisms in Berea sandstone to improve the volumetric sweep efficiency and increase oil recovery by in situ growth and metabolism following the injection of nutrients was studied. Cores of differing permeabilities connected in parallel without crossflow and slabs of sandstone with differing permeabilities in capillary contact to allow crossflow were used. The addition of a sucrosenitrate mineral salts medium stimulated the growth and metabolism of microorganisms in the sandstone systems. This resulted in a preferential decrease in permeability in the core or slab with the higher initial permeability, diverted flow into the lower-permeability core or slab and improved the volumetric sweep efficiency. Injectivity into the slab with the lower initial permeability in the crossflow system increased during subsequent nutrient injections. Thus, microbial selective plugging does occur in laboratory systems that have the complex flow patterns observed in petroleum reservoirs without losing the ability to inject fluids into the formation. In situ microbial growth and metabolism increased oil recovery 10 to 38% of the original oil in place. Biogenic gas production accompanied oil production, and much of the gas was entrained within the produced oil suggesting that gas production was an important factor leading to increased oil recovery. Quantitation of the amount of phospholipid in the core confirmed that microbial growth preferentially occurred throughout the core with the higher initial permeability. These data showed that in situ microbial growth in the high-permeability regions improved not only the volumetric sweep efficiency but also the microscopic oil displacement efficiency.  相似文献   

2.
In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can’t sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.  相似文献   

3.
Marine particles in the ocean are exposed to diverse bacterial communities, and colonization and growth of attached bacteria are important processes in the degradation and transformation of the particles. In an earlier study, we showed that the initial colonization of model particles by individual bacterial strains isolated from marine aggregates was a function of attachment and detachment. In the present study, we have investigated how this colonization process was further affected by growth and interspecific interactions among the bacteria. Long-term incubation experiments showed that growth dominated over attachment and detachment after a few hours in controlling the bacterial population density on agar particles. In the absence of grazing mortality, this growth led to an equilibrium population density consistent with the theoretical limit due to oxygen diffusion. Interspecific interaction experiments showed that the presence of some bacterial strains ("residents") on the agar particles either increased or decreased the colonization rate of other strains ("newcomers"). Comparison between an antibiotic-producing strain and its antibiotic-free mutant showed no inhibitory effect on the newcomers due to antibiotic production. On the contrary, hydrolytic activity of the antibiotic-producing strain appeared to benefit the newcomers and enhance their colonization rate. These results show that growth- and species-specific interactions have to be taken into account to adequately describe bacterial colonization of marine particles. Changes in colonization pattern due to such small-scale processes may have profound effects on the transformation and fluxes of particulate matter in the ocean.  相似文献   

4.
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.  相似文献   

5.
Summary The in situ growth of microorganisms in Berea sandstone cores preferentially plugged the larger pore entrances. The largest pore entrance sizes after microbial plugging ranged from 20 to 38 m, compared with 59 to 69 m before plugging. The pore entrance size distribution of plugged cores was shifted to smaller sizes. A mathematical model based on Poiseuille's equation was found to adequately predict permeability reductions (greater than 90%) caused by microbial growth in the large pore entries.Nomenclature Q volumetric flow rate (L 3/t) - C orifice constant (dimensionless) - A cross-sectional area (L 2) - g gravity (L/t 2) - h pieziometric head (L) - s transmittivity (L 2) - R e Reynolds number (dimensionless) - a constant (dimensionless) - density (M/L 3) - viscosity (M/Lt) - d diameter (L) - L length (L) - P pressure change (M/L 2)  相似文献   

6.
A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated.  相似文献   

7.
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.  相似文献   

8.
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.  相似文献   

9.
10.
Osteoblasts are involved in the bone resorption process by regulating osteoclast maturation and activity. In order to elucidate the mechanisms underlying osteoblast/preosteoclast cell interactions, we developed an in vitro model of co-cultured human clonal cell lines of osteoclast precursors (FLG 29.1) and osteoblastic cells (Saos-2), and evaluated the migratory, adhesive, cytochemical, morphological, and biochemical properties of the co-cultured cells. In Boyden chemotactic chambers, FLG 29.1 cells exhibited a marked migratory response toward the Saos-2 cells. Moreover, they preferentially adhered to the osteoblastic monolayer. Direct co-culture of the two cell types induced: (1) positive staining for tartrate-resistant acid phosphatase in FLG 29.1 cells; (2) a decrease of the alkaline phosphatase activity expressed by Saos-2 cells; (3) the appearance of typical ultrastructural features of mature osteoclasts in FLG 29.1 cells; (4) the release into the culture medium of granulocyte-macrophage colony stimulating factor. The addition of parathyroid hormone to the co-culture further potentiated the differentiation of the preosteoclasts, the cells tending to fuse into large multinucleated elements. These in vitro interactions between osteoblasts and osteoclast precursors offer a new model for studying the mechanisms that control osteoclastogenesis in bone tissue.  相似文献   

11.
油藏是一个高温、高压、少氧、寡营养和封闭的极端环境,油田经过多年注水开发后,在油藏内部形成了相对稳定的微生物群落体系,这些微生物以石油烃分解为起始,形成了一个复杂的食物链,对油藏碳、硫和金属离子的元素地球化学循环起着非常重要的作用。微生物提高原油采收率技术(MEOR)是利用微生物及其代谢产物与油藏和原油发生作用来提高原油采收率的一种新技术,具有成本低、适应性强和环境友好等特点,因此有望成为未来化学驱后油藏和高含水油藏进一步提高采收率的重要手段。对油藏内源微生物及其介导的生化反应,微生物采油原理、发展历程和现场试验进行综述,并提出了未来的发展方向。  相似文献   

12.
目的探讨星形胶质瘤细胞来源的外泌体中microRNA-1246(miRNA-1246)是否作用于星形胶质瘤细胞,促进其增殖与侵袭。 方法实验分为对照组、miRNA-1246抑制剂组与miRNA-1246模拟物组,各组设6个复孔。首先从患者血液中分离外泌体并鉴定其成分。通过基质胶包被的Transwell小室实验检测星形胶质瘤细胞在miRNA-1246作用下侵袭能力的变化,CCK-8实验检测细胞增殖能力。利用荧光素酶报告基因验证miRNA-1246是否靶向细胞黏附分子1(CADM1)基因。最后通过Western Blot实验与RT-qPCR实验检测癌症组织中CADM1蛋白水平的含量并分析其与胶质瘤的关系。采用方差分析和t检验进行统计学分析。 结果恶性胶质瘤患者血液循环外泌体中miRNA-1246的含量为2.83±1.70,高于对照组1.00±0.50,差异具有统计学意义(t?=?6.044,P?=?0.026)。转染miRNA-1246抑制剂后细胞CADM1蛋白水平为1.79±0.17,高于对照组1.00±0.09(t?=?4.576,P?=?0.017),细胞侵袭数量为(48.40±5.90)个,低于对照组96.50±6.70,而转染miRNA-1246模拟物后细胞侵袭数量为(123.20±9.80)个,高于对照组(96.50±6.70)个(t?=?5.258,P?=?0.002)。CCK-8实验中转染miRNA-1246抑制剂组A450值为0.49±0.08,低于对照组0.76±0.06,而转染miRNA-1246模拟物组A450值为1.03±0.09,显著升高(F?=?33.82,P?=?0.005)。荧光素酶报告实验表明细胞转染miR-?1246模拟物后荧光强度为4.98±1.86,低于对照组10.34±2.60(t?=?7.235,P?=?0.006),而CADM1-Mut组内之间比较差异无统计学意义。 结论胶质瘤细胞外泌体中的miRNA-1246可通过靶向CADM1基因抑制蛋白表达,促进胶质瘤细胞的增殖与转移,提示循环外泌体中的miRNA-1246可作为恶性胶质瘤诊断与治疗的潜在靶点。  相似文献   

13.
Established cultures of human skin-muscle cells were used for determining the parasite—host cell relationship of Trypanosoma cruzi amastigotes (12–16 passages) cultured in a cell-free medium (F-69) at 37 C. The medium used for this experiment was tissue culture fluid M-199 enriched with 10% fetal bovine serum and relatively high concentrations of ATP, ADP and AMP. Amastigotes entered skin-muscle cells incubated at 32 or 35 C, multiplied and completed their intracellular life cycle in about 7 days. At 35 C, 23.6% of cells became infected in 7 days and at 32 C, 43.6% were infected in 5 days. The higher infection rate of cultured cells at 32 C was probably due to more frequent and prolonged cell-parasite contact, as amastigotes multiplied in the tissue culture medium and remained viable for a longer period at the lower temperature. As a control, epimastigotes were used to infect skinmuscle cells. Epimastigotes transformed into metacyclic trypomastigotes before entering host cells, multiplied, and completed the intracellular life cycle. We conclude that the amastigotes cultured in F-69 at 37 C are biologically similar to intracellular amastigotes from the vertebrate host, in that both can multiply and complete the life cycle intracellulary.  相似文献   

14.
【目的】新疆油田六中区为典型水驱普通稠油油藏,水驱效果较差,油藏具有丰富的内源微生物,本研究通过分析内源微生物驱油对油藏微生物活动的影响,确定内源微生物驱油技术在该类油藏的应用潜力。【方法】采用高通量测序及分析化学技术,系统研究实施内源微生物驱油技术后油藏细菌群落结构组成、细菌总数和功能菌群的浓度以及采出液的流体性质,总结内源微生物驱油对油藏微生物活动的影响。【结果】现场试验注入激活剂和空气后,内源微生物被显著激活,细菌群落结构发生明显变化,细菌总数及功能菌群浓度普遍提高了2–3个数量级;各种内源微生物代谢活动显著增强,与地层流体相互作用后,原油明显被乳化,最终石油采收率提高5.2%。【结论】对于内源微生物较为丰富的水驱普通稠油油藏,内源微生物驱油技术对油藏微生物活动的影响显著,具有显著的技术优势和较大的应用潜力,微生物群落结构、功能菌群浓度及其相关代谢产物可以作为评价内源微生物驱油现场激活效果的重要指标,为其他内源微生物驱油现场试验提供技术参考。  相似文献   

15.
A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn(2+)-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells.  相似文献   

16.
油藏微生物的代谢特征和生态结构调控   总被引:1,自引:0,他引:1  
油藏环境中孕育着多种多样的微生物,这些微生物代谢类型多、变异性大,在微生物生态系统中占有重要位置。研究油藏中微生物的代谢特征和相互之间的生态关系,有助于提升对微生物提高采收率机理的认识。本文对油藏环境中常见微生物类群的代谢特征与功能、生态结构与调控等进行了简要综述。  相似文献   

17.
目的:从大庆油田原油样品中筛选出2株产有机酸量较高的菌株,并对其产物进行分析.方法:根据形态特征、生理生化性质和16S rDNA序列分析对菌株进行鉴定,并运用GC/MS法对发酵液进行分析.结果:经鉴定这两株为枯草芽孢杆菌,菌株T10 -3的发酵液中含有乙酸11.407%,异丁酸9.375%,丁二醇79.217%;菌株DH -2 -l发酵液的中含有异丁酸41.56%,丁二醇46.619%,异戊酸4.138%,异庚酸10.680%.结论:这两株细菌在微生物采油方面均有良好的应用前景.  相似文献   

18.
19.
Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h−1) and larger rods at high dilution rate (0.1 h−1). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C 0) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h−1) to 0.98 (succinate-limited, D=0.1 h−1). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.  相似文献   

20.
Cells remodel extracellular matrix during tissue development and wound healing. Similar processes occur when cells compress and stiffen collagen gels. An important task for cell biologists, biophysicists, and tissue engineers is to guide these remodeling processes to produce tissue constructs that mimic the structure and mechanical properties of natural tissues. This requires an understanding of the mechanisms by which this remodeling occurs. Quantitative measurements of the contractile force developed by cells and the extent of compression and stiffening of the matrix describe the results of the remodeling processes. Not only do forces exerted by cells influence the structure of the matrix but also external forces exerted on the matrix can modulate the structure and orientation of the cells. The mechanisms of these processes remain largely unknown, but recent studies of the regulation of myosin-dependent contractile force and of cell protrusion driven by actin polymerization provide clues about the regulation of cellular functions during remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号