首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the potential of digital tomosynthesis (DTS) derived cancellous bone textural measures to predict vertebral strength under conditions simulating a wedge fracture. 40 vertebral bodies (T6, T8, T11, and L3 levels) from 5 male and 5 female cadaveric donors were utilized. The specimens were scanned using dual energy X-ray absorptiometry (DXA) and high resolution computed tomography (HRCT) to obtain measures of bone mineral density (BMD) and content (BMC), and DTS to obtain measures of bone texture. Using a custom loading apparatus designed to deliver a nonuniform displacement resulting in a wedge deformity similar to those observed clinically, the specimens were loaded to fracture and their fracture strength was recorded. Mixed model regressions were used to determine the associations between wedge strength and DTS derived textural variables, alone and in the presence of BMD or BMC information. DTS derived fractal, lacunarity and mean intercept length variables correlated with wedge strength, and individually explained up to 53% variability. DTS derived textural variables, notably fractal dimension and lacunarity, contributed to multiple regression models of wedge strength independently from BMC and BMD. The model from a scan orientation transverse to the spine axis and in the anterior-posterior view resulted in highest explanatory capability (R2adj = 0.91), with a scan orientation parallel to the spine axis and in the lateral view offering an alternative (R2adj = 0.88). In conclusion, DTS can be used to examine cancellous texture relevant to vertebral wedge strength, and potentially complement BMD in assessment of vertebral fracture risk.  相似文献   

2.
C/N ratios of organic matter sources in coastal lagoons and their drainage areas in the southern Baltic Sea region are investigated to determine the origin of organic matter (i.e. terrigenous or marine) in the sediments of the lagoons. These ratios are compared with δ13C values in the area. Terrestrial plants in the study area show C/N ratios between 10 and 85, whereas aquatic macrophytes have values in the range of 6 to 44. Peat and shore vegetation have C/N ratios between 15 and 16, and plankton shows values close to 6. In conjunction with δ13C values, the C/N ratios in the sediments allow the reconstruction of the Holocene palaeoenvironments and palaeoecology in the lagoons (Oder Estuary and Greifswalder Bodden). Distinct stages in the development of the water bodies, resulting from sea level changes in the region, can be derived: post-glacial lake stages with sandy sedimentation, lacustrine phases with high autochthonous productivity, terrestrial stages with peat formation, sedimentation as a result of marine transgression, and brackish sedimentation after the formation of sand spits and barrier islands. The application of Corg/Ntot ratios instead of Corg/Norg does not have any significant influence on the interpretation of the data and may thus be used in the coastal sediments of the southern Baltic Sea after having applied the test procedures presented in this study.  相似文献   

3.
The molecular structures, relative stability order, and dipole moments of a complete family of 21 planar hypoxanthine (Hyp) prototropic molecular–zwitterionic tautomers including ylidic forms were computationally investigated at the MP2/6–311++G(2df,pd)//B3LYP/6–311++G(d,p) level of theory in vacuum and in three different surrounding environments: continuum with a low dielectric constant (??=?4) corresponding to a hydrophobic interface of protein–nucleic acid interactions, dimethylsulfoxide (DMSO), and water. The keto-N1HN7H tautomer was established to be the global minimum in vacuum and in continuum with ??=?4, while Hyp molecule exists as a mixture of the keto-N1HN9H and keto-N1HN7H tautomers in approximately equal amounts in DMSO and in water at T?=?298.15?K. We found out that neither intramolecular tautomerization by single proton transfer in the Hyp base, nor intermolecular tautomerization by double proton transfer in the most energetically favorable Hyp·Hyp homodimer (symmetry C 2h ), stabilized by two equivalent N1H…O6 H-bonds, induces the formation of the enol tautomer (marked with an asterisk) of Hyp with cis-oriented O6H hydroxyl group relative to neighboring N1C6 bond. We first discovered a new scenario of the keto–enol tautomerization of Hyp?·?Hyp homodimer (C 2h ) via zwitterionic near-orthogonal transition state (TS), stabilized by N1+H…N1? and O6+H…N1? H-bonds, to heterodimer Hyp??·?Hyp (C s ), stabilized by O6H…O6 and N1H…N1 H-bonds. We first showed that Hyp??·?Thy mispair (C s ), stabilized by O6H…O4, N3H…N1, and C2H…O2 H-bonds, mimicking Watson–Crick base pairing, converts to the wobble Hyp?·?Thy base pair (C s ), stabilized by N3H…O6 and N1H…O2 H-bonds, via high- and low-energy TSs and intermediate Hyp?·?Thy?, stabilized by O4H…O6, N1H…N3, and C2H…O2 H-bonds. The most energetically favorable TS is the zwitterionic pair Hyp+?·?Thy? (C s ), stabilized by O6+H…O4?, O6+H…N3?, N1+H…N3?, and N1+H…O2? H-bonds. The authors expressed and substantiated the hypothesis, that the keto tautomer of Hyp is a mutagenic compound, while enol tautomer Hyp? does not possess mutagenic properties. The lifetime of the nonmutagenic tautomer Hyp? exceeds by many orders the time needed to complete a round of DNA replication in the cell. For the first time purine–purine planar H-bonded mispairs containing Hyp in the anti-orientation with respect to the sugar moiety – Hyp?·?Ade syn , Hyp?·?Gua? syn , and Hyp?·?Gua syn , that closely resembles the geometry of the Watson–Crick base pairs, have been suggested as the source of transversions. An influence of the surrounding environment (??=?4) on the stability of studied complexes and corresponding TSs was estimated by means of the conductor-like polarizable continuum model. Electron-topological, structural, vibrational, and energetic characterictics of all conventional and nonconventional H-bonds in the investigated structures are presented. Presented data are key to understanding elementary molecular mechanisms of mutagenic action of Hyp as a product of the adenine deamination in DNA.  相似文献   

4.
[4-14C]Testosterone was converted to an unknown compound with a much higher Rf on thin layer chromatogram than the substrate when it was incubated with a rat brain microsomal preparation. Evidence from its mass, infrared, and ultraviolet spectra indicated that the enzymic product is a mixture of fatty acid esters of testosterone. Saponification of the product yielded testosterone and a mixture of C12:0, C14:0, C16:0, C18:0, and C18:1 fatty acids. The enzymic product was identical to testosterone laurate and testosterone stearate which were synthesized chemically. The enzyme system had a pH optimum at 4.9 with acetate buffer. The apparent Km was 8.3 × 10?5m for testosterone and 5.0 × 10?5m for palmityl CoA. An enzyme which hydrolyzes testosterone[1-14C]oleate was also detected in rat brain. Most of this activity was in the nuclear and mitochondrial fractions. This enzyme had an optimum pH at 6.5 with phosphate buffer and its apparent Km was 2.1 × 10?4m. A low level of synthetic activity was found in fetal brain tissue which increased and reached a maximum at 3 weeks of age. The synthetic activity rapidly decreased with further increase in age. Hydrolytic activity was nearly undetectable in fetal rat brain, increased gradually until the animal reaches 3 weeks old, and remained at this level. Both synthetic and hydrolytic enzyme activities were higher in the brain than in other tissues examined.  相似文献   

5.
Electrospray (ESI) mass spectra analysis of acetonitrile solutions of a series of neutral chloro dimers, pincer type, and monomeric palladacycles has enabled the detection of several of their derived ionic species. The monometallic cationic complexes Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1a) and [Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (1b) and the bimetallic cationic complex [κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]Pd-Cl-Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2]+ (1c) were detected from an acetonitrile solution of the pincer palladacycles Pd[κ1-C1-N1-S-C(CH3S-2-C6H4)C(Cl)CH2N(CH3)2](Cl) 1. For the dimeric compounds {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (2, Y=H and 3, CF3), highly electronically unsaturated palladacycles [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2d, 3d) and their mono and di-acetonitrile adducts, namely, [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)]+ (2e, 3e) and [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)2]+ (2f and 3f) were detected together with the bimetallic complex [Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]-Cl-Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N](CH3)2]+ (2a, 3a) and its acetonitrile adducts [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[ κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2]+ (2b, 3b) and [κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)Pd-Cl-Pd[κ1-C, κ1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2(CH3CN)]+ (2c, 3c). The dimeric palladacycle {Pd[κ1-C1-N-C(CH3O-2-C6H4)C(Cl)CH2N(CH3)2](μ-Cl)}2 (4) is unique as it behaves as a pincer type compound with the OCH3 substituent acting as an intramolecular coordinating group which prevents acetonitrile full coordination, thus forming the cationic complexes [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)Pd]+ (4b), [(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2- κOCN)Pd(CH3CN)]+ (4c) and [(C6H4 (o-MeO)CC(Cl)CH2N(CH3)2O, κCN)Pd-Cl-Pd(C6H4(o-CH3O)CC(Cl)CH2N(CH3)2OCN)]+ (4a). ESI-MS spectra analysis of acetonitrile solutions of the monomeric palladacycles Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Cl)(Py) (5, Y=H and 6, Y=CF3) allows the detection of some of the same species observed in the spectra of the dimeric palladacycles, i.e., monometallic cationic 2d-3d, 2e-3e and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](Py)}+ (5a, 6a) and {Pd[κ1-C1-N-C(Y-2-C6H4)C(Cl)CH2N(CH3)2](CH3CN)(Py)}+ (5b, 6b) and the bimetallic 2a, 3a, 2b, 3b, 2c and 3c. In all cationic complexes detected by ESI-MS, the cyclometallated moiety was intact indicating the high stability of the four or six electron anionic chelate ligands. The anionic (chloride) or neutral (pyridine) ligands are, however, easily replaced by the acetonitrile solvent.  相似文献   

6.
The silver(I) salts [AgOR] (3a, R = C9H6N; 3b, R = C6H4-2-CHO, 3c, R = C6H4-2-Cl; 3d, R = C6H4-2-CN; 3e, R = C6H4-2-NO2) are accessible by the stoichiometric reaction of [AgNO3] (1) with HOR (2a, R = C9H6N; 2b, R = C6H4-2-CHO; 2c, R = C6H4-2-Cl; 2d, R = C6H4-2-CN; 2e, R = C6H4-2-NO2) in presence of NEt3. Treatment of 3a-3e with PnBu3 (4), P(OMe)3 (5a) or P(OCH2CF3)3 (5b) in the ratios of 1:1 and 1:2, respectively, produced complexes [LmAgOR] (L = PnBu3, = 1: 6a, R = C9H6N; 6b, R = C6H4-2-CHO; 6c, R = C6H4-2-Cl; 6d, R = C6H4-2-CN; 6e, R = C6H4-2-NO2. = 2: 7a, R = C9H4; 7b, R = C6H4-2-CHO; 7c, R = C6H4-2-Cl; 7d, R = C6H4-2-CN; 7e, R = C6H4-2-NO2. L = P(OMe)3, = 1: 8a, R = C6H4-2-CHO; 8b, R = C6H4-2-NO2. = 2: 9, R = C6H4-2-NO2. L = P(OCH2CF3)3, = 1: 10, R = C6H4-2-NO2). Based on TGA, temperature-programmed and in situ molecular beam mass spectrometry metal-organic 7e was applied as CVD precursor in the deposition of silver onto glass substrates. The resulting silver films were characterized by XRD. The SEM image of a film grown from 7e at 350 °C showed a homogeneous surface with grain sizes of 40 nm. The molecular structures of 8b and 10 in the solid state were determined. They are isostructural and are cubane-like structured. Low-temperature 31P{1H} NMR studies showed that the title complexes are dynamic in solution and exchange at room temperature their ligands.  相似文献   

7.
Atmospheric CO2 enrichment may impact arbuscular mycorrhizae (AM) development and function, which could have subsequent effects on host plant species interactions by differentially affecting plant nutrient acquisition. However, direct evidence illustrating this scenario is limited. We examined how elevated CO2 affects plant growth and whether mycorrhizae mediate interactions between C4 barnyard grass (Echinochloa crusgalli (L.) Beauv.) and C3 upland rice (Oryza sativa L.) in a low nutrient soil. The monocultures and combinations with or without mycorrhizal inoculation were grown at ambient (400 ± 20 μmol mol?1) and elevated CO2 (700 ± 20 μmol mol?1) levels. The 15N isotope tracer was introduced to quantify the mycorrhizally mediated N acquisition of plants. Elevated CO2 stimulated the growth of C3 upland rice but not that of C4 barnyard grass under monoculture. Elevated CO2 also increased mycorrhizal colonization of C4 barnyard grass but did not affect mycorrhizal colonization of C3 upland rice. Mycorrhizal inoculation increased the shoot biomass ratio of C4 barnyard grass to C3 upland rice under both CO2 concentrations but had a greater impact under the elevated than ambient CO2 level. Mycorrhizae decreased relative interaction index (RII) of C3 plants under both ambient and elevated CO2, but mycorrhizae increased RII of C4 plants only under elevated CO2. Elevated CO2 and mycorrhizal inoculation enhanced 15N and total N and P uptake of C4 barnyard grass in mixture but had no effects on N and P acquisition of C3 upland rice, thus altering the distribution of N and P between the species in mixture. These results implied that CO2 stimulation of mycorrhizae and their nutrient acquisition may impact competitive interaction of C4 barnyard grass and C3 upland rice under future CO2 scenarios.  相似文献   

8.
The gases released on DF dissolution of a variety of samples have been studied by gas chromatography and high resolution mass spectrometry. Results on Apollo 12 samples confirm previous observations that CH4 and C2H6 are released as well as CD4, C2D4, C2D6 and higher deuterated hydrocarbons. The yields correlate with the total carbon content of the samples and the CH4 and C2H6 released may be regarded as indigenous while the deuterated products result from hydrolysis of carbide material. Dissolutions were also performed on five size fractions of sample 14240,5, ranging from >420 to <37 . The yields of CH4, CD4,20Ne and36Ar correlate with the surface area and therefore probably arise from solar wind implantation. Other deuterocarbons released include C2D4, C2D6, C3D6, C3D8 and C4D10. Preliminary pyrolysis results of these size differentiated samples confirmed the presence and surface correlation of the CH4,20Ne and36Ar. Dissolution of the 14148, 14156 and 14149 trench samples showed that their carbon chemistry and solar wind exposure are very similar to that of the 14240 SESC and Apollo 11 and 12 fines of high carbon content. Other interesting components released from the soil samples by DF include D2S, DCN and CS2.This paper is an amplified version of the comments made by Dr Holland during the discussions at the meeting on Lunar Analysis: Significance for Exobiology, held at College Park, Maryland, October 26–28, 1971.  相似文献   

9.
A series of lateral radiographs of the cervical spinal column was evaluated in order to determine vertebral body dimensions. The sample included males (N=30) and females (N=31) 18 to 24 years old, comprising three stature percentile ranges (1-20; 40-60; 80-99) of the U.S. adult population. A two-dimensional analysis of vertebral body height (average distance between superior-inferior surgaces), depth (average distance between anteriorposterior surfaces), and area (average height X average depth) revealed minimal effects due to stature. In all subjects, average depth exceeded average height for vertebral bodies C3 through C7. Upon combining stature groups, both sexes revealed maximum average values for these dimensions at the seventh cervical vertebral body. Minimum average height occurred at C5 whereas minimum average depth was found at C3. Significant correlation (alpha greater than 0.05) was found for males between ponderal index and height and depth of the C7 vertebra. Male head weight correlated significantly with C3, C4, C5 and C6 vertebral body height and with C3, C5 and C6 vertebral body depth. For females, C7 height and C6 depth correlated significantly with ponderal index and head weight respectively. Probable biomechanical relationships of specific cervical vertebral bodies are noted  相似文献   

10.
A novel Gram-negative, motile, rod-shaped, facultative anaerobic bacterial strain, KMK6T, was isolated from soil contaminated with textile dyes from an industrial estate located at Ichalkaranji, Maharashtra, India, and its taxonomical position was established by using a polyphasic approach. The major cellular fatty acids included C17:1ω8c, summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH), C17:0, C16:0, and C18:1ω7c. The DNA G+C content of strain KMK6T was 48.8 mol %. 16S rRNA gene sequence analysis confirmed its placement in the genus Alishewanella, and exhibited sequence similarity levels of below 97 % to the type strains of validly published Alishewanella species. On the basis of genotypic and phenotypic evidence, strains KMK6T is considered to be a novel species of the genus Alishewanella, for which we propose that strain KMK6T (=NCIM 5295T =BCRC 17848T) is assigned to a novel species, Alishewanella solinquinati sp. nov.  相似文献   

11.
We investigated the interrelations between C4 ketogenesis (production of β-hydroxybutyrate + acetoacetate), C5 ketogenesis (production of β-hydroxypentanoate + β-ketopentanoate), and anaplerosis in isolated rat livers perfused with 13C-labeled octanoate, heptanoate, or propionate. Mass isotopomer analysis of C4 and C5 ketone bodies and of related acyl-CoA esters reveal that C4 and C5 ketogenesis share the same pool of acetyl-CoA. Although the uptake of octanoate and heptanoate by the liver are similar, the rate of C5 ketogenesis from heptanoate is much lower than the rate of C4 ketogenesis from octanoate. This results from the channeling of the propionyl moiety of heptanoate into anaplerosis of the citric acid cycle. C5 ketogenesis from propionate is virtually nil because acetoacyl-CoA thiolase does not favor the formation of β-ketopentanoyl-CoA from propionyl-CoA and acetyl-CoA. Anaplerosis and gluconeogenesis from heptanoate are inhibited by octanoate. The data have implications for the design of diets for the treatment of long chain fatty acid oxidation disorders, such as the triheptanoin-based diet.The regulation of the metabolism of C4 ketone bodies, i.e. β-hydroxybutyrate (BHB)2 and acetoacetate (AcAc) has been extensively investigated in vivo in isolated livers, hepatocytes, and subcellular preparations (for reviews, see Refs. 14). In contrast, very little information is available on the metabolism of C5 ketone bodies, i.e. β-hydroxypentanoate (BHP) and β-ketopentanoate (BKP), which are known in the clinical literature as 3-hydroxyvalerate and 3-ketovalerate (5, 6). The C5 ketone bodies are formed in liver from the partial oxidation of odd-chain fatty acids (see Fig. 1, center column). C5 ketogenesis uses the same enzymes of the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) cycle as C4 ketogenesis. The counterpart of HMG-CoA in C5 ketogenesis is 3-hydroxy-3-ethylglutaryl-CoA (HEG-CoA). We only found one report on the formation of [14C]HEG-CoA in liver extract incubated with propionyl-CoA and [1-14C]acetyl-CoA (7).Open in a separate windowFIGURE 1.Scheme of C4 ketogenesis and C5 ketogenesis in the liver. Numbers refer to the following enzymes: 3-ketoacyl-CoA thiolase (1), HMG-CoA synthase (2), HMG-CoA lyase (3), and β-hydroxybutyrate dehydrogenase (4). The figure also shows the link between propionyl-CoA and the CAC via anaplerosis.Because odd-chain fatty acids are absent from the diet of non-ruminant mammals, body fluids contain only traces of C5 ketone bodies. However, C5 ketone bodies and hydroxyethylglutarate are found in body fluids of patients with disorders of the anaplerotic pathway, propionyl-CoA → methylmalonyl- CoA → succinyl-CoA, such as deficiency in propionyl-CoA carboxylase and methylmalonyl-CoA mutase as well as biotin or vitamin B12 deficiency (5, 6, 8). The formation of C5 ketone bodies in these pathological states involves either the conversion of propionyl-CoA to BKP-CoA via 3-ketoacyl-CoA thiolase (Fig. 1, reaction 1) or the β-oxidation of odd-chain fatty acids synthesized in these patients (9) using propionyl-CoA as a primer (10).Like their C4 counterparts, the C5 ketone bodies are interconverted by mitochondrial BHB dehydrogenase (11). In peripheral tissues, C5 ketone bodies are converted to propionyl-CoA (which is anaplerotic) + acetyl-CoA via 3-oxoacid-CoA transferase (12) and 3-ketoacyl-CoA thiolase. Peripheral tissues have a high capacity to utilize exogenous C5 ketone bodies (13), especially heart, kidney, and brain, which have high activities of 3-oxoacid-CoA transferase (14, 15).Our interest in C5 ketone body metabolism arose from an ongoing clinical trial where patients with long chain fatty acid oxidation disorders are treated with a diet containing triheptanoin (16, 17) instead of the classical treatment with the even-chain triglyceride trioctanoin. These patients suffer from muscle weakness and rhabdomyolysis, manifested by the release of creatine kinase in plasma. It was hypothesized that the accumulation of long chain acyl-CoAs and long chain acylcarnitines results in membrane damage with release of large and small molecules from cells. The leakage of small molecules would deplete intermediates of the citric acid cycle (CAC) which carry acetyl groups as they are oxidized. It was further hypothesized that boosting anaplerosis with a suitable substrate would compensate for the chronic cataplerosis and improve heart and muscle function. The catabolism of heptanoate yields propionyl-CoA, which can be used for anaplerosis in most tissues, and C5 ketone bodies in liver. C5 ketone bodies are converted to propionyl-CoA, which can be used for anaplerosis in peripheral tissues. The marked improvement of the patients'' conditions after switching from a trioctanoin- to a triheptanoin-based diet supported the hypothesis.After ingestion of meals containing triheptanoin as the only lipid component, both C5 ketone bodies and C4 ketone bodies accumulated in the plasma of patients that have been diagnosed with disorders of long chain fatty acid oxidation (16). This suggested that acetyl groups derived from heptanoate can be used for the synthesis of C4 and C5 ketone bodies. Alternatively, the accumulation of C4 ketone bodies after triheptanoin ingestion might result from the inhibition of the utilization of C4 ketone bodies in peripheral tissues by C5 ketone bodies.The aim of the present study was to investigate the interaction between C4 and C5 ketogenesis in rat livers perfused with octanoate and/or heptanoate. To gain insight on the fates of the acetyl groups of both fatty acids and on the fate of the propionyl-CoA moiety of heptanoate, we conducted the experiments with a series of labeled substrates: [1-13C]octanoate, [8-13C]octanoate, [5,6,7-13C3]heptanoate, [1-13C]heptanoate, and [13C3]propionate. The outcome of the propionyl-CoA moiety of [5,6,7-13C3]heptanoate and [13C3]propionate was traced by measurements of anaplerosis and glucose labeling by mass isotopomer3 analysis (18). In previous studies on the metabolism of odd-chain fatty acids in liver or hepatocytes (19, 20), ketone bodies were assayed with BHB dehydrogenase. This assay does not differentiate C4 from C5 ketone bodies. In the present study we used gas chromatography-mass spectrometry to specifically assay C4 and C5 ketone bodies (13).  相似文献   

12.
The geometrical structures, potential energy surface, stability, and bonding character of low-energy isomers of planar C3B3 were systematically explored and investigated at the B3LYP/6-311+G(d)// CCSD(T)/6-311+G(d) level for the first time. A large number of planar structures for low-energy isomers of C3B3 are located and reported. In particular, isomers 1 (Cs,2A’) and 2 (Cs,2A’), with a belt-like structure corresponding to the lowest-energy structures of planar C3B3, are revealed. Based on molecular orbital (MO) and natural bond orbital (NBO) analyses, delocalized σ MOs, multi-centered σ MOs, and delocalized π MOs play an important role in stabilizing the structures of low-energy isomers of C3B3. It is interesting to note from isomerization analysis that the interconversion of isomers 2 and 7 can be realized through two isomerization channels. The results demonstrate that isomers 1, 2, 3, 4, 7, 9, 12, 17, 19, and 20 of C3B3 are stable both thermodynamically and kinetically at the B3LYP/ 6-311+G(d)//CCSD(T)/ 6-311+G(d) level, and that they are observable in the laboratory, which is helpful for future experimental studies of C3B3.  相似文献   

13.
In the presence of purified nitrate reductase (NR) and 1 mM NADH, illuminated pea chloroplasts catalysed reduction of NO3? to NH3 with the concomitant evolution of O2. The rates were slightly less than those for reduction of NO2? to NH3 and O2, evolution by chloroplasts in the absence of NR and NADH (ca 6 μg atoms N/mg Chl/hr). Illuminated chloroplasts quantitatively reduced 0.2 mM oxaloacetate (OAA) to malate. In the presence of an extrachloroplast malate-oxidizing system comprised of NAD-specific malate dehydrogenase (NAD-MDH), NAD, NR and NO3?, illuminated chloroplasts supported OAA-dependent reduction of NO3? to NH3 with the evolution of O2. The reaction did not proceed in the absence of any of these supplements or in the dark but malate could replace OAA. The results are consistent with the reduction of NO3?by reducing equivalents from H2O involving a malate/OAA shuttle. The ratios for O2, evolved: C4-acid supplied and N reduced: C4-acid supplied in certain experiments imply recycling of the C4-acids.  相似文献   

14.
A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9T, was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9T was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C16:0, C18:1 ω7c and summed in feature 3 (C16:1 ω7c and/or C16:1 ω6c). Strain N9T was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9T was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 %, respectively. Phylogenetic analysis showed that strain N9T formed a distinct branch within the family Rhodobacteraceae and clustered with the clade comprising species of the genus Pseudorhodobacter, together with species of the genera Roseicitreum, Roseinatronobacter, Roseibaca and Rhodobaca. Species of the genus Pseudorhodobacter are phylogenetically close with a 16S rRNA gene sequence dissimilarity of 5.9–7.3 % (92.7–94.1 % similarity). Based on the above-mentioned phenotypic characteristics and on phylogenetic inference, strain N9T is proposed as a representative of a new genus and a novel species of the family Rhodobacteraceae as Albirhodobacter marinus gen. nov., sp. nov. The type strain of Albirhodobacter marinus is N9 (= MTCC 11277T = JCM 17680T).  相似文献   

15.
The effects of species richness and elevated CO2 on community productivity under altered nutrient levels were studied in experimental herbaceous communities composed of species from the Midwestern United States annual community, which consists of three functional groups C3, C4 and N‐fixers. Aboveground and belowground biomass were measured at flowering stage and at the end of the experiment when fruits of most plants were ripe. At the low nutrient level, species richness did not have a significant effect on community productivity. However, at the high nutrient level, the community biomass decreased with decreasing species richness at both ambient and elevated CO2 in the first harvest, and at elevated CO2 in the second harvest. At low nutrient level, CO2 slightly increased community biomass at medium and high species richness. At high nutrient level, CO2 significantly increased community biomass in all species‐richness treatments in the first harvest, but a significant response was observed only in the high richness treatment in the second harvest. At the functional group level, biomass of C3 responded positively to CO2, and C4 responded very negatively to CO2. The N‐fixers responded positively to CO2 at low and medium species richness, but negatively at high species richness, showing a CO2×richness interaction. CO2 increased species evenness in the communities, depending on nutrient level. Species varied in the responses of light‐saturated net photosynthesis (Pmax) to elevated CO2, even within functional groups. Our findings suggest that (1) the relationship between productivity and species diversity was dependent on nutrient levels. (2) Species diversity enhances responses of communities to elevated CO2. (3) Harvest time can affect the results of diversity‐productivity experiments. (4) Responses of C3, C4, and N‐fixers to elevated CO2 in communities did not follow the prediction based on functional groups or plants grown individually, rather it depended on species richness.  相似文献   

16.
Abstract Ultrastructural and physiological characteristics of the C3-C4 intermediate Neurachne minor S. T. Blake (Poaceae) are compared with those of C3 and C4 relatives, and C3-C4Panicum milioides Nees ex Trin. N. minor consistently exhibits very low CO2 compensation points (τ: 1.0, usually 0.3–0.6 Pa) yet has C3-like δ13C values. CO2 assimilation rates (A) respond like those of C3 plants to a decrease in O2 partial pressure (2 × 104–1.9 × 103 Pa) at ambient CO2 levels, but this response is progressively attenuated until negligible at very low CO2. By contrast, other species of the Neurachneae are clearly either C4 (two spp.) or C3 (seven spp.). For plants grown and measured at different photon flux densities (PFDs), τ for N. minor and P. milioides increases from 0.5 to 1.0, and from 1.0 to 2.1 Pa, respectively, as PFD is decreased from 1860 to 460 μmol m?2s?1. In N. minor, the O2 response of τ is either biphasic as in P. milioides, but much diminished and with a higher transition point, or is very C4-like. As in C4 relatives, inner sheath cells contain numerous chloroplasts. Their walls possess a suberized lamella, which may make them more CO2-tight than bundle sheath cells of P. milioides, contributing to the almost C4-like τ characteristics of N. minor. The biochemical basis of C3-C4 intermediacy is considered.  相似文献   

17.

Background

Internal jugular vein (IJV) narrowing has been implicated in central nervous system pathologies, however normal physiological age- and gender-related IJV variance in healthy individuals (HIs) has not been adequately assessed.

Objectives

We assessed the relationship between IJV cross-sectional area (CSA) and aging.

Materials and Methods

This study involved 193 HIs (63 males and 130 females) who received 2-dimensional magnetic resonance venography at 3T. The minimum CSA of the IJVs at cervical levels C2/C3, C4, C5/C6, and C7/T1 was obtained using a semi-automated contouring-thresholding technique. Subjects were grouped by decade. Pearson and partial correlation (controlled for cardiovascular risk factors, including hypertension, heart disease, smoking and body mass index) and analysis of variance analyses were used, with paired t-tests comparing side differences.

Results

Mean right IJV CSA ranges were: in males, 41.6 mm2 (C2/C3) to 82.0 mm2 (C7/T1); in females, 38.0 mm2 (C2/C3) to 62.3 mm2 (C7/T1), while the equivalent left side ranges were: in males, 28.0 mm2 (C2/C3) to 52.2 mm2 (C7/T1); in females, 27.2 mm2 (C2/C3) to 47.8 mm2 (C7/T1). The CSA of the right IJVs was significantly larger (p<0.001) than the left at all cervical levels. Controlling for cardiovascular risk factors, the correlation between age and IJV CSA was more robust in males than in the females for all cervical levels.

Conclusions

In HIs age, gender, hand side and cervical location all affect IJV CSA. These findings suggest that any definition of IJV stenosis needs to account for these factors.  相似文献   

18.
An experiment was carried out to determine the effects of elevated CO2, elevated temperatures, and altered water regimes in native shortgrass steppe. Intact soil cores dominated by Bouteloua gracilis, a C4 perennial grass, or Pascopyrum smithii, a C3 perennial grass, were placed in growth chambers with 350 or 700 μL L?1 atmospheric CO2, and under either normal or elevated temperatures. The normal regime mimicked field patterns of diurnal and seasonal temperatures, and the high-temperature regime was 4 °C warmer. Water was supplied at three different levels in a seasonal pattern similar to that observed in the field. Total biomass after two growing seasons was 19% greater under elevated CO2, with no significant difference between the C3 and C4 grass. The effect of elevated CO2 on biomass was greatest at the intermediate water level. The positive effect of elevated CO2 on shoot biomass was greater at normal temperatures in B. gracilis, and greater at elevated temperatures in P. smithii. Neither root-to-shoot ratio nor production of seed heads was affected by elevated CO2. Plant tissue N and soil inorganic N concentrations were lower under elevated Co2, but no more so in the C3 than the C4 plant. Elevated CO2 appeared to increase plant N limitation, but there was no strong evidence for an increase in N limitation or a decrease in the size of the CO2 effect from the first to the second growing season. Autumn samples of large roots plus crowns, the perennial organs, had 11% greater total N under elevated CO2, in spite of greater N limitation.  相似文献   

19.
Summary Microplasmodia ofPhysarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30mm K+, 4mm Ca++, 3mm Mg++, 18mm citrate buffer, pH 4.7, 22°C), the transmembrane potential differenceV m is around –100 mV and the membrane resistance about 0.25 m2.V m is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN, N 3 ),V m drops to about 0 mV. Under normal conditions,V m is very sensitive to external pH (pH o ), displaying an almost Nernstian slope at pH o =3. However, when measured during metabolic inhibition,V m shows no sensitivity to pH o over the range 3 to 6, only rising (about 50 mV/pH) at pH o =6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1mm of the sugar. Sugar-induced depolarization was insensitive to pH o . The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981,J. Membrane Biol. 63:165–190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.  相似文献   

20.
Phosphorus deficiency is a very common problem in the acid soil of central China. Previous research has shown that starter N and N topdressing at the flowering stage (Rl) increased soybean (Glycine max) yield and N2 fixation (Gan et al, 1997, 2000). However, there is little information available concerning soybean response to P‐fertiliser in soybean production in central China (Gan, 1999). A field experiment was conducted to investigate the response to P (0 kg P ha?1, 22 kg P ha?1, 44 kg P ha?1 before sowing) and N fertiliser application (N1: 0 kg N ha?1, N2: 25 kg N ha?1 before sowing, N3: N2 + 50 kg N ha?1 at the V2 stage and N4: N2 + 50 kg N ha?1 at the R1 stage) on growth, yield and N2 fixation of soybean. Both N and P fertiliser increased growth and seed yield of soybean (P < 0.01). Application of basal P fertiliser at 22 kg P ha?1 or 44 kg P ha?1 increased total N accumulation by 11% and 10% (P < 0.01) and seed yield by 12% and 13% (P < 0.01), respectively, compared to the zero P treatment. Although application of starter N at 25 kg N ha?1 had no positive effect on seed yield at any P level (P > 0.05), an application of a topdressing of 50 kg N ha?1 at the V2 or R1 stage increased total N accumulation by 11% and 14% (P < 0.01) and seed yield by 16% and 21% (P < 0.01), respectively, compared to the zero N treatment. Soybean plants were grown on sterilised Perlite in the greenhouse experiment to study the physiological response to different concentrations of phosphate (P1: 0 mM; P2: 0.05 mM; P3: 0.5 mM; P4:1.0 mN) and nitrate (N1: 0 mM with inoculation, N2: 20 mM with inoculation). The result confirmed that N and P nutrients both had positive effects on growth, nodulation and yield (P < 0.01). The relative importance of growth parameters that contributed to the larger biomass with N and P fertilisation was in decreasing order: (i) total leaf area, (ii) individual leaf area, (iii) shoot/root ratio, (iv) leaf area ratio and (v) specific leaf area. The yield increase at N and P supply was mainly associated with more seeds and a larger pod number per plant, which confirmed the result from the field experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号