首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the Falck-Hillarp method for demonstration of biogenic amines, the presence of indole alkylamine (possibly 5-hydroxytryptamine) containing enterochromaffin cells in strongly ciliated areas of the lancelet intestine was confirmed. An electron microscopic investigation of these areas, i.e. the “lateral ciliated tract” and the “dorsal ciliated tract”, revealed two cell types. 1. Mucous cells, equipped with tall cilia and giant rootlets, constitute the dominating type. 2. Enterochromaffin cells, containing numerous electron dense granules, are sparsely scattered among the mucous cells. The intestinal indole alkylamine is believed to be involved in the regulation of ciliary activity.  相似文献   

2.
The mucous cells of the intestinal and salivary gland epitheliumof the snail Helix lucorum produce granules exhibiting a strongpositive reaction for periodate-reactive carbohydrates. Thecytochemical appearance of the mucous granules in the two tissuesis quite different; in the salivary glands the granules displayconcentric rings in a web-like pattern of periodate-reactivematerial, while in the intestine this material displays a compactstructure. The mucous granules in both tissues also react positivelyfor sulphated and carboxylated carbohydrates. Large quantities of glycogen particles are also present in closerelation to lipid inclusions in ciliated and unciliated cellsof the intestinal epithelium. Hibernation and starvation did not alter the chemistry of carbohydratessecreted by the intestinal and salivary gland cells. The amountof glycogen particles and lipid inclusions, however, drasticallydecreased in columnar cells inhibernated and starved snailscompared to controls. (Received 16 June 1994; accepted 20 October 1994)  相似文献   

3.
The alimentary tract of the ammocoete of the lamprey, Petromyzon marinus L., is divisible into three morphologically distinct regions: the oesophagus, the anterior intestine, and the posterior intestine. The epithelium of the oesophagus possesses mucous, ciliated, and columnar cells and appears to be specialized for movement of food particles. The epithelium of the anterior intestine possesses secretory cells with numerous zymogen granules, ciliated cells, and columnar-absorptive cells. Although some absorption occurs in the anterior intestine, the main function of this region seems to be the release of digestive enzymes and the continued movement of food particles. The epithelium of the posterior intestine is entirely comprised of columnar absorptive cells, namely tall (light and dark) columnar and low columnar, and the primary function of this region is one of absorption. The epithelium of the hindgut resembles that of the archinephric duct (Youson and McMillan, '71). The morphology of the alimentary tract of ammocoetes suggests that some differentiation and renewal of cell types may occur in the epithelium of the three regions. Comparison of the alimentary tract of larval lamprey with that of other vertebrates indicates that the gut of the ammocoete represents a less specialized level of vertebrate development.  相似文献   

4.
The mucosa of the mouth, pharynx, oesophagus and rectum of Arrhamphus sclerolepis krefftii contain saccular mucous cells and the lining of the intestinal mucosa contains goblet mucous cells. Saccular mucous cells in the buccal epithelium are present in relatively low densities and contain acidic and neutral glycoprotein-secreting cells in an approximately 1:1 ratio. The saccular mucous cells in the mucosa of the pharynx, oesophagus and rectum are abundant and contain acidic glycoprotein which consists principally of sialomucin with traces of sulphomucin distributed around the periphery of the mucous vacuoles. Goblet cells in the intestinal mucosa contain neutral glycoprotein. Mechanically digested plant material within the lumen of the gut is bound by a sheath of acidic glycoprotein which is in contact with the intestinal mucosa. From these observations and with information on the known properties of acidic glycoproteins, a novel mechanism for the involvement of mucus in the extraction of nutrients from plant material mechanically digested by fish is proposed.  相似文献   

5.
采用阿利新兰-碘酸雪夫氏反应(AB-PAS)染色法及酶学方法研究了大鳞副泥鳅成熟个体肠道各段黏液细胞分布及消化酶活性。结果表明, 大鳞副泥鳅肠道黏液细胞分为Ⅰ、Ⅱ、Ⅲ和Ⅳ 4种类型。前肠至后肠, 黏液细胞数量逐渐减少。前肠主要分布Ⅲ和Ⅳ混合型黏液细胞, 后肠则以Ⅱ和Ⅳ型酸性黏液细胞为主。肠道胰蛋白酶活性显著高于淀粉酶和脂肪酶。且后肠消化酶活性显著低于前肠和中肠。根据黏液细胞及消化酶活性分布特点, 表明大鳞副泥鳅属于杂食性鱼类, 前肠为其主要的消化吸收场所, 后肠中性黏液细胞的数量较少以及消化酶活性较低, 表明其对食物的消化吸收功能较弱, 与其为辅助呼吸功能的特点相关。  相似文献   

6.
Summary The gut of a crinoid echinoderm is described for the first time by transmission electron microscopy. The gut comprises a short esophagus, a relatively long intestine and a short rectum. From the luminal side to the coelomic side, the layers of the gut wall are an inner epithelium, an epineural plexus (much reduced or absent in the intestine and rectum), haemal fluid, smooth muscles mixed with a hyponeural plexus, and a visceral peritoneum. The inner epithelium of the esophagus consists of numerous flagellated enterocytes and some mucous cells containing abundant mucous granules. The luminal surface of the esophagus, but not that of the other gut regions, is covered by a conspicuous cuticle. The inner epithelium of the intestine consists of some exocrine cells, presumably exporting digestive enzymes to the gut lumen, and numerous vesicular enterocytes that are flagellated and contain a few apical mucous granules. The inner epithelium of the rectum is made up entirely of vesicular enterocytes most of which lack a flagellum. The uptake of macromolecules from the gut lumen was demonstrated by feeding the feather stars food mixed with ferritin. By 4 h after feeding, ferritin was identified in presumed secondary lysosomes within the enterocytes of the esophagus and within the vesicular enterocytes of the intestine and rectum. The functional implications of the new fine structural results are discussed.  相似文献   

7.
The defence system of the distal gut (hindgut and rectum) of Atlantic cod, (Gadus morhua L.) was studied using (immuno)histochemical, electron microscopical and real-time quantitative PCR techniques. The uptake and transport of macromolecules in the intestinal epithelium was also investigated.In this study we observed that cod has many and large goblet cells in its intestinal epithelium and that IgM+ cells are present in the lamina propria and their number is considerably higher in the rectum than in the intestine. Myeloperoxidase staining revealed low numbers of granulocytes in and under the epithelium of the distal intestine, whereas high numbers were found clustered in the submucosa of the rectum. Electron microscopy not only confirmed these observations, but also revealed the presence of lymphoid cells and macrophages within the intestinal epithelium. Acid phosphatase staining demonstrated more positive macrophage-like cells in the rectum than in the distal intestine. Antigen uptake studies showed a diffused absorption of horse radish peroxidase (HRP) and LTB-GFP, whereas ferritin uptake could not be detected.Basal gene expression of cytokines (IL-1β, IL-8 and IL-10) and immune relevant molecules (hepcidin and BPI/LPB) were compared in both the intestine and rectum and revealed approximately 2–9 times higher expression in the rectum, of which IL-1β expression showed the most prominent difference.The present results clearly indicate that intestinal immunity is very prominent in the rectum of cod.  相似文献   

8.
利用解剖、HE和AB-PAS染色技术研究了菲牛蛭消化系统的形态结构及组织化学特征。结果表明, 菲牛蛭消化系统由消化管和单细胞唾液腺组成。消化管包括口、咽、食道、嗉囊、肠、直肠和肛门。口开孔于前吸盘腹中部, 口腔内有3片呈三角形排列的颚片, 颚片由辐射肌和横纹肌构成, 其脊上具单列细齿, 可切开寄主皮肤。单细胞唾液腺开口于颚片两侧的乳突上, 可分泌蛭素; 咽呈短球形, 由黏膜层、肌层和外膜构成,肌层发达; 食道短而窄, 黏膜层见少量杯状细胞和大量嗜酸性颗粒; 嗉囊两侧有10对侧盲囊, 最后一对侧盲囊最长且延伸至肛门两侧; 肠部尚无明显分化, 可细分为肠和直肠。肠前段腔内有多个盲囊状的细管, 形成 肠内盲囊, 黏膜层具较多腺细胞, 黏膜下层发达, 具丰富的血管和淋巴细胞; 直肠肠腔明显大于肠的肠腔, 褶皱高度明显比肠的低, 上皮细胞间可见少量杯状细胞。AB-PAS染色结果显示菲牛蛭消化管黏液细胞有4种类型: Ⅰ型被染成红色, Ⅱ型被染成蓝色, Ⅲ型染成紫红色, Ⅳ型染成蓝紫色。口腔部黏液细胞分布以Ⅳ型和Ⅲ型为主, 少量Ⅱ型与Ⅰ型黏液细胞, 咽部以Ⅲ型为主, 食道、嗉囊、肠前部以及直肠壁均无酸性和中性黏液细胞存在, 肠中后部以Ⅰ型为主, 肛门壁存在大量的Ⅱ型黏液细胞。讨论了菲牛蛭消化管结构特点与食性的关系等问题, 发现肠是菲牛蛭整个消化管最主要的消化和吸收场所, 且消化管特殊的结构特征决定了菲牛蛭主要以血液作为食物来源。  相似文献   

9.
Abstract. The appendicularians, planktonic tunicates, possess a specialized, external filtering system that captures food particles <1 μm in size. In this work the alimentary canal of Oikopleura dioica has been studied by serial sections of whole animals and ultrastructure. The gut includes a dorsal esophagus, a bilobed saccular stomach, and a curved intestine, divided into vertical, mid-, and distal intestine (or rectum). No multicellular glands or cellular proliferative centers were found. Three main cell types were recognized, ciliated microvillar cells, globular cells and gastric band cells, with specializations reflecting different physiological roles in the various regions. Ciliated microvillar cells, the most diffuse, are considered to be involved in food propulsion, fecal pellet formation, absorption, and nutrient storage. Pinocytotic features and vacuoles suggest that absorption of macromolecules and intracellular digestion occur in the globular cells of the stomach and rectum. The large gastric band cells of the left lobe have typical features of intense protein synthesis and probably produce enzymes for extracellular digestion. Diffuse interdigitations of many cells enormously increase the plasmalemma surface and may be involved in liquid/ion exchange. Despite the apparent structural simplicity of the gut epithelium, O. dioica efficiently processes food to fulfill the energy requirements of its exceptionally rapid life-cycle.  相似文献   

10.
Fine structure of the intestine development in cultured sea bream larvae   总被引:5,自引:0,他引:5  
At hatching, the gut cells of Sparus aurata are quite undifferentiated; however, slight ultrastructural differences can already be distinguished between the presumptive intestinal regions. The hindgut cells are more differentiated than midgut cells and the rectal cells show rather particular ultrastructural features. During days 1 (D1) and 2 (D2) after hatching, major changes occur that lead to full differentiation of the epithelial cells. Shortly before the onset of exogenous feeding (D3), the anterior intestine enterocytes can synthesize lipoprotein particles (LP) from endogenous lipids. The posterior intestine enterocytes show morphological features indicating a role in absorption and intracellular digestion of nutrients, whereas the rectal cells do not. Transient ciliated cells occur at hatching (D0) in the presumptive intestine, except in the caudal rectum, and disappear at the start of the late endotrophic phase about 3 days after hatching (D3). At hatching, very scarce enteroendocrine and leucocyte-like cells are found at the base of the gut epithelium. Their number increases throughout development. At D3 (late endotrophic phase), LP synthesized mainly in the periblast invade the circulatory system, interstitial spaces of the subepithelial tissue and intercellular spaces of the gut epithelium. When the endo-exotrophic phase begins (D4), the enterocytes can absorb exogenous food. Acid phosphatase activity was detected in microvilli, pical vacuoles and Golgi complex in both anterior and posterior enterocytes, as well as in supranuclear vacuoles (SNV) of posterior enterocytes, but not in the apical tubulovesicular system (TVS). During the exotrophic phase, large lipid droplets (LD) are found in anterior enterocytes, and the SNV occupy a large cell volume in posterior enterocytes. LP accumulate first in extracellular spaces and then are transferred to the circulatory system. Mucous and rodlet cells appear in the intestinal epithelium during the exotrophic phase, from D15.  相似文献   

11.
The neritid snail Nerita picea is a marine prosobranch mollusc which resides high in the intertidal zone on the Hawaiian Islands. Since other studies have shown considerable variations in molluscan gut histology and the relatively few recent ultrastructural reports have revealed novel cellular structures in the molluscan gastrointestinal tract, this investigation was directed toward ultrastructural clarification of the neritid intestine. Seven principal cell types constituted the intestinal architecture, including absorptive cells, zymogen cells, neural and endocrine cells, myocytes, pigment and gland cells. The intestinal epithelium was composed mainly of tall ciliated (9 plus 2 complement of microtubules) columnar absorptive cells which also possessed microvilli, extensive deposits of non-membrane-bound lipid-like droplets, and large reservoirs of glycogen-like granules. Less frequent, columnar zymogen cells contained numerous large zymogen secretory granules and possessed microvilli but not cilia. Small endocrine-like cells with secretory granules were observed basolaterally between some absorptive cells, resembling mammalian gut endocrine cells. Nerve fibers were prevalent in close association with the epithelial cells. A thin layer of non-striated muscle was present, as well as a serosally located gland composed of storage cells with a granular matrix and large granules.  相似文献   

12.
The events in the transformation of the intestine of the larval lamprey into the adult intestine were followed through the seven (1–7) stages of metamorphosis in anadromous Petromyzon marinus L. Light and electron-microscope observations demonstrated that the processes of degeneration, differentiation, and proliferation are involved in the transformation. In the anterior intestine, degeneration of cells and the extrusion of others into the lumen results in the disappearance of secretory (zymogen) cells and the decline in numbers of endocrine and ciliated cells. Larval absorptive cells, with a prominent brush border, are believed to dedifferentiate into unspecialized columnar cells with few microvilli. Degeneration and removal of cells occurs by both autophagy and heterography and cells extruded into the lumen in the anterior intestine are phagocytosed by epithelial cells of the posterior intestine. The loss of epithelial cells during transformation results in the folding and degradation of parts of the basal lamina and in an extensive widening of the lateral intercellular spaces in all parts of the intestine. As metamorphosis is a nontrophic period of the lamprey life cycle, the possible morphological effects of starvation on the intestinal epithelium are discussed. The development of longitudinal folds is a consequence of the events of metamorphic transformation of the intestinal mucosa. Although an interaction between the epithelium and the underlying tissues is believed to be importent, the actual mechanism of fold development is unknown. The intestinal epithelium of adult lampreys develops from surviving cells of the larval (primary) epithelium. Unlike the situation in amphibians, there does not appear to be a group (nest) of undifferentiated larval cells which differentiate into the adult (secondary) epithelium. Instead, in lampreys, columnar cells that persist through the degradative processes seem to be the source of absorptive and ciliated cells and probably are responsible for mucous and secretory cells. Preliminary observations indicate that the intestinal epithelium of feeding adults is specialized into an anterior region which liberates a secretion, absorbs lipid, and possesses the machinery for ion transport. A posterior region absorbs lipid, secretes mucus, and likely is involved in some protein absorption.  相似文献   

13.
中华须鳗嗅觉器官形态学观察   总被引:2,自引:1,他引:1  
利用光学显微镜和扫描电镜观察了10尾不同体长中华须鳗嗅觉器官的结构.结果表明:中华须鳗嗅囊呈楔型;嗅囊膜和嗅囊腹面的透明膜共同围成嗅囊腔;嗅囊长径与眼径的平均比值为2.2倍;每侧嗅囊嗅板数变化范围在30~44之间;嗅板远轴端有一纤毛和嗅孔密集的舌状游离突;嗅板上皮纤毛密集,纤毛细胞表现为3种类型:纤毛感觉细胞、纤毛非感觉细胞和微绒毛感觉细胞;纤毛非感觉细胞和微绒毛细胞也出现在嗅囊壁.嗅板上大量的纤毛表明,中华须鳗嗅囊的水动力机制应属嗅板纤毛搅动型(isosmates).除观察到嗅囊壁表面有两种类型的微嵴外,还首次在嗅板上观察到一种呈荸荠状的杆状细胞.  相似文献   

14.
The U-shaped alimentary tract of Cephalodiscus is of exclusively epithelial structure; on the basis of fine structural criteria the entire tract can be divided into two large subdivisions: an anterior one with mouth, mouth cavity, pharynx and oesophagus, and a posterior one with stomach and intestine. The anterior subdivision is built up of a relatively uniform, innervated, pseudostratified, ciliated epithelium with mucus cells which are concentrated in the initial parts of the mouth cavity. Cilia and mucus presumably constitute a mechanism transporting food particles into the stomach. In the area of the gill slits specific vacuolated cells occur which may lend rigidity to the walls of the slits. The gastric epithelium consists of prismatic cells characterized by, among others, large inclusion bodies, which may represent digestive vacuoles, small dense rod-shaped granules and an elaborate system of microridges, at the base of which abundant endocytotic vesicles occur. The dorsal gastric pouch contains cells rich in rough ER and secretory granules, probably containing digestive enzymes. Thus morphological evidence points both to intra- and extracellular digestion. The intestinal epithelium resembles that of the stomach, however, it is lower, its organelles are fewer and it bears, beside cilia, mainly microridges, which towards its distal end become sparse. Both in the gastric and intestinal epithelium small granulated cells have been found, which presumably represent endocrine cells.  相似文献   

15.
The developmental pattern of the bovine fetal large intestine was studied with particular reference to the appearance and decline of the intestinal villi during the fetal period. In the bovine large intestine, the first rudimentary villus and goblet cells were seen in the rectum in a fetus estimated to be 3 months old. By 5-6 months, the goblet cells, absorptive cells in the intestinal crypts, and vacuolated cells in the villi were present along all segments of the large intestine. By 8-9 months, the villi have disappeared from the colon and rectum, epithelial cells no longer contain vacuoles, and absorptive and goblet cell populations are emerging from the crypts. These histological results suggest that development in the bovine large intestine follows a recto-cecal gradient and the most distinct turning point during the fetal period is the first disappearance of fetal villi in the rectum of fetuses estimated to be 7 months old. After this stage, the mucous membrane of the colon and rectum matured rapidly before birth. In contrast, the cecum may seem to require further development in perinatal life.  相似文献   

16.
Gastro-respiratory tract of the loach,Lepidocephalichthys guntea has been studied with special reference to the nature of its mucus secreting epithelia. The mucous cells are strongly PAS-positive and their number per unit area (mm2) in the mucosal layers of oesophagus, intestinal bulb, intestine and rectum are 733, 531, 223 and 540, respectively. The air-breathing segment of the gut is completely devoid of neutral mucosubstances, and there is a predominance of acidic mucosubstances over the neutral ones throughout the digestive tube. The air-blood pathway of the accessory respiratory organ is about 2.6 μm which is higher than the values of air-breathing organs of other fishes.  相似文献   

17.
The straight intestinal tract of the mud loach Misgurnus anguillicaudatus was divided into an intestine and rectum which consisted of a mucosa (epithelial layer), lamina propria‐submucosa, muscularis and serosa. The intestine and rectum have shorter mucosal folds and a thinner wall. Extensive vascular capillary networks were present in the mucosa of the intestine and the rectum. The diffusion distance between the vascular capillaries and the lumen in the intestinal and rectal mucosal epithelium was about 11.2 μm (±1.12). The majority of the epithelial mucous cells contain acidic mucins although there are small amounts of a mixture of acidic and neutral mucins. The intestinal tract of M. anguillicaudatus is probably modified to suit its role of respiration for the deficient oxygen supply within their environment.  相似文献   

18.
The epithelium of the hepatic region of the intestine in Saccoglossus mereschkowskii, a representative of enteropneusts (Enteropneusta, Hemichordata), a group located at the base of Chordata, has been studied by using electron microscopy. The ultrastructure of ciliated and granular epithelial cells, elements of the intraepithelial nerve layer, and intercellular junctions are characterized. The data on the details of the structure of the ciliary apparatus and the system of ciliary rootlets are presented. Justification is provided for the presence of a complicated construction in the ciliated cells, a supportive carcass of cilia that performs a mechanical stabilizing function, and possibly the synchronization of the ciliary movement. The existence of cilia with two centrioles is considered as adaptation to the high functional load on the ciliary apparatus. Well-developed bundles of myofilaments have been revealed in the cytoplasm of the basal parts of ciliated cells, which characterizes these cells as epitheliomuscular. Peculiarities indicating the role of ciliated cells in absorption are described, as well as the capability of these cells for balloon-like secretion. Data are presented on the accumulation of reserved nutritional substances in the cell cytoplasm in the form of lipids and glycogen. With respect to their function, ciliated cells are determined as the ciliated secretory-absorptive epitheliomuscular cells. The location of secretory granules in both apical and basal parts of granular cells indicates the exocrine-endocrine function of these cells. There are no typical endocrine cells in the intestinal epithelium of S. mereschkowskii. Several types of granules are described in the cytoplasm of nerve fibers. Junctions between nerve fibers and basal parts of ciliated and granular epithelial cells have been revealed; the neural regulation of the contractile and secretory functions of epithelial cells is assumed. The intestinal epithelium of enteropneusts is presumed to contain a regulatory neuroendocrine system composed of receptor cells of the open type, secretory endocrine-like cells, and of nerve elements of the nervous layer.  相似文献   

19.
The morphology and histology of the alimentary canal of the rock chiton Acanthopleura spinigera are described and the ability of regions of the gut to digest specific substrates investigated. The oesophagus is produced into a pair of thin-walled lateral pouches, the salivary glands or "sugar glands" which empty into the stomach. Folds of the capacious stomach are almost obscured by the large digestive gland over which is coiled the intestine. Histologically the gut consists of an outer layer of connective tissue, an inner muscular layer and a ciliated epithelium which varies in thickness from one region to the next. Proteases are most active in the stomach, digestive gland and anterior intestine at pH 6·5 and in the posterior intestine at pH 7·5-8·5. The digestion of lipoidal substance was greatest in the stomach and digestive gland and least in anterior intestine. There was little increase in the amount of digestion product obtained after 20 hours incubation. All regions of the alimentary canal and salivary gland were capable of digesting carbohydrates except that many low molecular weight carbohydrates were digested by salivary gland extracts only. The amylases were most active at pH 6–6·5. It is concluded that digestive enzymes are distributed throughout the intestinal tract but the amount of enzyme present varies from region to region, and is greatest just after feeding.  相似文献   

20.
Paraffin sections of trachea, sublingual gland, and pancreas from rats, mice, and hamsters were stained with peanut agglutinin (PNA) or Dolichos biflorus agglutinin (DBA) conjugated to horseradish peroxidase before or after enzymatic removal of sialic acid. Adjacent sections were oxidized with periodate prior to incubation with sialidase and staining with PNA and DBA. PNA binding demonstrated terminal beta-galactose in secretions, at the basolateral plasmalemma of mouse tracheal serous cells, in or at the surface of zymogen granules, and at the apical and basolateral surface of mouse and hamster pancreatic acinar cells. Sialidase digestion revealed PNA binding, demonstrative of penultimate beta-galactose, in secretions of mucous cells in tracheal and sublingual glands and at the apical glycocalyx of ciliated and secretory cells in the tracheal surface epithelium of all the rodents studied. Sialidase also imparted PNA affinity to endothelium in all three species and to secretions and the basolateral plasmalemma of tracheal serous cells and pancreatic acinar cells in the rat. Periodate oxidation blocked the enzymatic removal of N-acetylneuraminic acid as judged by prevention of staining with the sialidase-PNA procedure. Sites in which periodate prevented sialidase-PNA staining included pancreatic islet cells and at the luminal glycocalyx of ciliated and secretory cells in tracheal surface epithelium in all three rodents, most sublingual mucous cells in the hamster, pancreatic acinar cells in the rat, and endothelium, except that of the rat. Glycoconjugate in other sites remained positive with the periodate-sialidase-PNA sequence. Resistance to periodate was interpreted as evidence for the presence of terminal sialic acid with an O-acetylated polyhydroxyl side chain. DBA binding demonstrated terminal alpha-N-acetylgalactosamine in the secretion of all mucous cells in the hamster trachea and 50-90% of those in the rat, secretion and the basolateral plasmalemma of all glandular serous cells in the mouse trachea, at the apical surface of most secretory cells lining the lumen of the rat and hamster trachea, and cilia of 5-10% of ciliated cells in the rat trachea. Periodate oxidation and sialidase digestion demonstrated N-acetylneuraminic acid and penultimate alpha-N-acetylgalactosamine in cilia in the mouse trachea and sialic acid containing O-acetylated polyhydroxyl side chains subtended by N-acetylgalactosamine in the secretion of all mucous cells in the rat and hamster trachea and of 80-90% of mucous cells in the hamster sublingual gland.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号