首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of functional electrical stimulation (FES) to enable paraplegics to stand is not new or indeed difficult to undertake under laboratory conditions. However, there are substantial problems to overcome before such systems can be used routinely by patients without professional supervision. The overriding consideration has to be one of safety, i.e. the system must be ‘fail safe’. Secondly, the system must be quick and easy to use in a wide variety of locations, otherwise it will not provide any increase in function. Finally, it must be inexpensive enough to be available to a large number of paraplegics. The primary aim of our work was to provide such a system to enable mid-thoracic lesion paraplegics to stand wherever they wish. This involved the development of a microprocessor-based stimulator to enable the stimulating envelope to be individually tailored to a given patient's requirements and the provision of closed loop control to minimize fatigue. A folding standing frame was also designed which replaces the arm rests on a standard wheelchair. Using this system, the user is able to stand within 30 s of stopping and can remain standing for up to 10 min. Cosmetic calipers (knee-ankle-foot orothoses) are also being used for paraplegics who require to stand for longer periods. It is hoped that such a system will provide stable standing for a large number of paraplegics at a unit cost of approximately £750.  相似文献   

2.
Standing by means of functional electrical stimulation (FES) after spinal cord injury is a topic widely reported in the neurorehabilitation literature. This practice commonly uses surface stimulation over the quadriceps muscle to evoke knee extension. To date, most FES neuroprostheses still operate without any artificial feedback, meaning that after a fatigue-driven knee buckle event, the stimulation amplitude or pulse width must be increased manually via button presses to re-establish knee-lock. This is often referred to as ‘hand-controlled (HC) operation’. In an attempt to provide a safer, yet clinically practical approach, this study proposed two novel strategies to automate the control of knee extension based on the kinematic feedback of four miniaturised motion sensors. These strategies were compared to the traditional HC strategy on four individuals with complete paraplegia. The standing times observed over multiple trials were in general longer for the automated strategies when compared to HC (0.5–80%). With the automated strategies, three of the subjects tended to need less upper body support over a frame to maintain balance. A stability analysis based on centre of pressure (CoP) measurements also favoured the automated strategies. This analysis also revealed that although FES standing with the assistance of a frame was likely to be safe for the subjects, their stability was still inferior to that of able-bodied individuals. Overall, the unpredictability of knee buckle events could be more effectively controlled by automated FES strategies to re-establish knee-lock when compared to the traditional user-controlled approach, thus demonstrating the safety and clinical efficacy of an automated approach.  相似文献   

3.
We describe and evaluate above- and below-lesion EMG control of functional electrical stimulation (FES) in upper motor neuron paraplegics, in order to provide them with a patient-responsive system for walking with a walker support. Control is considered in terms of a combination of above-lesion EMG control and below-lesion response-EMG control. The above-lesion EMG is used to control the activation of limb functions involved in standing up and walking with FES, control being accomplished by analysing raw surface-EMG time-series patterns to discriminate between upper-trunk muscle contraction patterns, which in turn, are correlated with intended lower-limb functions involved in walking, so that natural and instinctive balance changes in paraplegics are controlled by the patient from above the lesion. The below-lesion response-EMG is the EMG produced in response to the FES pulses at the stimulation sites, for adjusting stimulation levels as needed when contractions weaken due to muscle fatigue. Above-lesion EMG is a stochastic (random-like) signal, being a response to unsynchronized motor neuron firings, whereas the below-lesion EMG is a deterministic signal responding to synchronized firings that result solely from the FES pulses. We also discuss the merits and difficulties of EMG control, and evaluate patient performance under such control, noting that FES-activated walking without adequate and patient-responsive control is of very limited use to paraplegics.  相似文献   

4.
Functional Electrical Stimulation (FES) is a technique used to improve mobility and function for patients suffering some neurological related diseases such us Multiple Sclerosis (MS) and stroke. Some patients might require FES applied in more than one location depending on the extent of the neurological condition. Currently, this can be achieved using multi-channel FES systems. However, these systems can be bulky and impractical in daily usage. This research investigates using a wireless distributed FES system to overcome some of the limitations of the current multi-channel systems. A prototype of a three-channel FES system was built and tested. The prototype is used for drop foot stimulation and reciprocal arm swing stimulation while the user is walking, and for elbow extension and wrist/fingers opening stimulation if triggered while standing or sitting. A pilot study was designed to evaluate the reliability and repeatability of the system with 11 healthy volunteers without applying stimulation. This was followed by a case study with a hemiplegic person. The results indicate that the system can successfully detect and generate output responses appropriate to the input signals from the body sensors.  相似文献   

5.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

6.
Arm-free paraplegic standing via functional electrical stimulation (FES) has drawn much attention in the biomechanical field as it might allow a paraplegic to stand and simultaneously use both arms to perform daily activities. However, current FES systems for standing require that the individual actively regulates balance using one or both arms, thus limiting the practical use of these systems. The purpose of the present study was to show that actuating only six out of 12 degrees of freedom (12-DOFs) in the lower limbs to allow paraplegics to stand freely is theoretically feasible with respect to multibody stability and physiological torque limitations of the lower limb DOF. Specifically, the goal was to determine the optimal combination of the minimum DOF that can be realistically actuated using FES while ensuring stability and able-bodied kinematics during perturbed arm-free standing. The human body was represented by a three-dimensional dynamics model with 12-DOFs in the lower limbs. Nakamura's method (Nakamura, Y., and Ghodoussi, U., 1989, "Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators," IEEE Trans. Rob. Autom., 5(3), pp. 294-302) was applied to estimate the joint torques of the system using experimental motion data from four healthy subjects. The torques were estimated by applying our previous finding that only 6 (6-DOFs) out of 12-DOFs in the lower limbs need to be actuated to facilitate stable standing. Furthermore, it was shown that six cases of 6-DOFs exist, which facilitate stable standing. In order to characterize each of these cases in terms of the torque generation patterns and to identify a potential optimal 6-DOF combination, the joint torques during perturbations in eight different directions were estimated for all six cases of 6-DOFs. The results suggest that the actuation of both ankle flexionextension, both knee flexionextension, one hip flexionextension, and one hip abductionadduction DOF will result in the minimum torque requirements to regulate balance during perturbed standing. To facilitate unsupported FES-assisted standing, it is sufficient to actuate only 6-DOFs. An optimal combination of 6-DOFs exists, for which this system can generate able-bodied kinematics while requiring lower limb joint torques that are producible using contemporary FES technology. These findings suggest that FES-assisted arm-free standing of paraplegics is theoretically feasible, even when limited by the fact that muscles actuating specific DOFs are often denervated or difficult to access.  相似文献   

7.
R L Kirby  S G Coughlan  M Christie 《CMAJ》1995,153(11):1585-1591
Despite emerging evidence about the high incidence and severity of wheelchair-related injuries, regulations governing wheelchair safety are almost nonexistent in Canada. The authors believe that, to improve wheelchair safety, a concerted effort by government, manufacturers, purchasing groups, users and clinicians is needed. Health Canada''s Health Protection Branch should treat wheelchairs as medical devices (as defined in the Food and Drugs Act 1985) and improve its injury-reporting network. Manufacturers should give a higher priority to safety in wheelchair design, improve their educational materials and formalize postmarketing surveillance. Purchasing groups should try to ensure that they do not stifle innovation in wheelchair design by setting unrealistic reimbursement ceilings and should use their market power more effectively. Users should obtain their wheelchairs in specialized settings, heed safety warnings and make more effective use of litigation when such action is warranted. Clinicians should ensure that patients are equipped with the most appropriate wheelchair for their needs, that they are given adequate training in safe wheelchair use and that they understand the dangers involved. Rapid changes in wheelchair technology and emerging evidence about the high incidence and severity of injuries related to wheelchair use suggest that such changes are needed in the wheelchair delivery system.  相似文献   

8.
 For individuals with paraplegia, standing up requires activation of paralyzed leg muscles by an artificial functional electrical stimulation (FES) controller and voluntary control of arm forces by the individual. Any knowledge of such voluntary control, particularly its prediction, could be used to design more effective FES controllers. Therefore, artificial neural network models were developed to predict voluntary arm forces from measured angular positions of the ankle, knee, and hip joints during FES-assisted standing up in paraplegia. The training data were collected from eight paraplegic subjects in repeated standing-up trials, and divided into two categories for training and validation. The predictions of the models closely followed both the training and validation data, showing good accuracy and generalization. The comparison of the models showed that, although there are striking similarities among the voluntary controls adopted by different subjects, each subject develops his/her own `personal strategy' to control the arm forces, which is consistent from trial to trial. The level of consistency was dependent on the experience in using FES, injury level, body weight, and other subject-specific parameters. Received: 5 January 1999 / Accepted in revised form: 29 January 2001  相似文献   

9.
Functional neuromuscular stimulation (FNS)/functional electrical stimulation (FES) is a potential way to restore some functionality to the limbs of patients with spinal cord injury through direct/indirect stimulation of the motoneuron. One of the constraints for wider use of FNS on paraplegic patients is the lack of efficient control algorithm. Most of the published works on FNS/FES control are based on oversimplified models of human body dynamics. An innovative control strategy for stabilizing the standing posture of paraplegic patients is proposed here which is a combination of a proportional-plus-derivative controller for motions of the skeletal system and a control action prediction mechanism to produce musculotendon activation. The goal is to produce musculotendon torque which can approximate those demanded by the controller for the skeletal system. In computer simulations, using a detailed skeletal–musculotendon–muscle activation dynamics model of human body, this FNS/FES control approach can stabilize a paraplegic patient's standing posture with the minimum number of musculotendon groups. Also, it is found that this control strategy can maintain stability even in the presence of reasonable variations in the controller's musculotendon parameters.  相似文献   

10.
In India, about 0.86 million people is engaged in pulling cycle rickshaws as occupation. There is no anthropometric data of cycle rickshaw pullers although data is available for Indian population. The objective of the study was to collect anthropometric data of the cycle rickshaw pullers so that these could be utilized for redesigning a cycle rickshaw. Anthropometric data for 34 body measurements were recorded from 880 rickshaw pullers (age 18 to 66 years) of four different places in India. The mean values of different standing heights, different lengths and breadths of cycle rickshaw pullers were significantly lower compared with Indian population. However, there was no significant difference in erect sitting height. The outcome of the research project is beneficial for the manufacturers of cycle rickshaws and similar products well as users of such products, including rickshaw pullers. The manufacturers would be able to use the data for fabricating newer models of cycle rickshaws which would be more compatible for rickshaw pullers as well as passengers.  相似文献   

11.
A hybrid functional electrical stimulation (FES) orthosis is described, comprising a rigid ankle-foot brace, a multi-channel FES stimulator with surface electrodes, body mounted sensors, a ‘rule-based’ controller and an electro-cutaneous display for supplementary sensory feedback. The mechanical brace provides stability, without FES activation of muscles, for standing postures normally adopted by patients. This avoids inducing muscle fatigue during prolonged upright activity. However, stability is conditional upon the position of the ground reaction vector (GRV) relative to the knee joint. The finite state FES controller reacts automatically to destabilizing shifts of the GRV by stimulating appropriate anti-gravity musculature to brace the leg. The FES system also features a control mode to initiate and terminate flexion of the leg during forward progression. A simple mode of supplementary sensory feedback was used during the laboratory standing tests to assist the patient in maintaining a set posture. Preliminary results of laboratory tests for two spinal cord injured subjects are presented.  相似文献   

12.
The classification of lower-limb disabilities is commonly based on the site of the spinal cord lesion or the amount of functional muscle. Another important variable in assessing wheelchair users is their ability to carry out the activities of daily living. The cardiorespiratory fitness of those with lower-limb disabilities is usually assessed with arm-ergometry and wheelchair tests, each of which has some advantages. Muscle strength and endurance are also important aspects of the disabled person''s ability to function. Fitness is often poor in the disabled, and normal wheelchair use does not seem to prove an adequate training stimulus. Exercise with an arm ergometer and with pulleys and participation in vigorous wheelchair sports can improve physical condition. Participation in exercise programs should be based on the results of a fitness assessment and on the level of the spinal cord lesion in those with paraplegia. Progression in such programs should be gradual to ensure that the exerciser does not become discouraged and drop out of classes before fitness is increased. Data on wheelchair athletes suggest that, with persistence, many individuals in wheelchairs can adjust relatively well to their disabilities.  相似文献   

13.
Loss of mobility due to lower limb paralysis is a common result of thoracic level spinal cord injury. Functional electrical stimulation (FES) can restore primitive gait in the vicinity of a wheelchair by using electrical stimulation to generate muscle contractions. A new concept for FES-assisted gait is presented that combines electrical stimulation with an orthosis that contains a fluid power system to store and transfer energy during the gait cycle. The energy storage orthosis (ESO) can be driven through a complete gait cycle using only stimulation of the quadriceps muscles. The conceptual design of the ESO was completed and implemented in a dynamic simulation model and in a benchtop prototype for engineering measurements. No studies were conducted with human subjects. The results demonstrate the potential of the ESO concept for a feasible gait-assist system and the validity of the simulation model as a means for designing the system.  相似文献   

14.
Evidence of the form and function of bipedal behavior in nonhuman primates provides critical evidence to test theories about the origins of hominid bipedalism. Bipedalism has long been considered an evolutionarily interesting but rare behavior in wild chimpanzees. During May 2001, chimpanzees of the Ruhija community in the Bwindi Impenetrable National Park, Uganda, engaged in an exceptional frequency of arboreal bipedalism when feeding in large Ficus trees. Seventy-eight bipedal bouts of at least 5 sec duration were recorded for the entire community (0.49 bouts/hr), with a mean duration of 13.7 sec (+/-1.6 sec). The animals employed many variations on the bipedal postural theme, ranging from erect standing on the largest substrates while grasping overhead limbs for support, to standing on one leg while suspending the other leg in space, to extended-lean standing, in which bipedal standing transitioned into horizontal arm-leg suspension as the animal reached for more distant fruits. Bipedalism was used as part of a behavioral repertoire that integrated brachiation, four-limbed suspension, and forelimb-supported standing for effective small-fruit foraging. These observations suggest that under certain ecological conditions, arboreal bipedalism can be an important posture for wild chimpanzees, and may have been an important behavioral precursor to full terrestrial bipedalism.  相似文献   

15.
A major limitation in the utilization of a functional electrical stimulation (FES) orthosis for routine, daily standing and walking of the spinal-cord-injured person is that visual monitoring is required to maintain balance and the walking pace. For standing and walking to be continuous and automatic with such an orthosis, a closed-loop sensory feedback system is proposed and evaluated; it provides vibrotactile feedback as a substitute to one's own visual sensation. Eight blindfolded experimental subjects were utilized as ‘imitators’ to interpret the footfalls of a second person (the pace setter). The experimental objective was to test the hypothesis that sufficient information could be transferred by way of the sensory (tactile) feedback system to the ‘imitator’ and to determine effectively foot position and anticipate the next step of the pacesetter. Quantitative analysis evaluated the effect of three different levels of training, under two different levels of cognitive load. The results disclosed a significant improvement in subject performance at the higher training levels compared with the ‘no training’ level (P = 0.01). Neither the cognitive load nor the interaction of training and cognitive load altered significantly the effect of training on subject performance. The experimental hypothesis is therefore satisfied that sufficient information was indeed transferred using the apparatus described. Such information (when utilized in conjunction with a thorough training programme) could be used in a practical sense by a paraplegic individual to interpret his own foot steps. Through continued use and training, it is likely that this information could become subconscious and automatic. Therefore, the spinal-cord-injured person would walk with an FES orthosis in various environments and minimize or remove their reliance on visual sensory information.  相似文献   

16.
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs: motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems.  相似文献   

17.
A model is presented to study and quantify the contribution of all available sensory information to human standing based on optimal estimation theory. In the model, delayed sensory information is integrated in such a way that a best estimate of body orientation is obtained. The model approach agrees with the present theory of the goal of human balance control. The model is not based on purely inverted pendulum body dynamics, but rather on a three-link segment model of a standing human on a movable support base. In addition, the model is non-linear and explicitly addresses the problem of multisensory integration and neural time delays. A predictive element is included in the controller to compensate for time delays, necessary to maintain erect body orientation. Model results of sensory perturbations on total body sway closely resemble experimental results. Despite internal and external perturbations, the controller is able to stabilise the model of an inherently unstable standing human with neural time delays of 100 ms. It is concluded, that the model is capable of studying and quantifying multisensory integration in human stance control. We aim to apply the model in (1) the design and development of prostheses and orthoses and (2) the diagnosis of neurological balance disorders. Received: 25 August 1997 / Accepted in revised form: 8 December 1998  相似文献   

18.
Moderate grazing intensity is considered the basic requirement to enhance ecosystem function in grasslands. Yet, deterioration by overgrazing is common in many biomes, including Campos grasslands in South America. Understanding how grazing management can lead to recovery of ecosystem function is essential to design and implement effective strategies for sustainable use of this resource. In a long‐term field experiment carried out in Southern Brazil, we studied the effects of temporal grazing exclusions (spring or fall) at moderate and severe livestock grazing intensities (maintained by adjusting contrasting forage allowances) on the species richness, botanical composition, forage mass, sward height, and photosynthetic active radiation intercepted. The experiment was arranged in a completely randomized design with three replications of grazing exclusions, applied simultaneously at moderate and severe grazing intensities. Moderate grazing intensity showed a bimodal structure of shorter and taller canopies, and high species richness. Severe grazing created a shorter and homogeneous sward structure characterized by less standing biomass and species loss. In response to grazing exclusions, sward height, standing biomass, and light interception recovered almost to the levels of moderate grazing. Further, within 2 years grass species richness increased and botanical composition changed toward grasses with erect habit prevailing in moderate grazing intensity. Our study confirms that (1) moderate grazing intensities allow the coexistence of high number of species and (2) spring grazing exclusions of long‐term overgrazed grasslands can lead to a quick start to recover the grass species richness, primary productivity, and species composition like that prevailing in well‐managed grasslands.  相似文献   

19.
Currently, electric wheelchairs are commonly used to improve mobility in disabled people. In severe cases, the user is unable to control the wheelchair by themselves because his/her motor functions are disabled. To restore mobility function, a brain-controlled wheelchair (BCW) would be a promising system that would allow the patient to control the wheelchair by their thoughts. P300 is a reliable brain electrical signal, a component of visual event-related potentials (ERPs), that could be used for interpreting user commands. This research aimed to propose a prototype BCW to allowed severe motor disabled patients to practically control a wheelchair for use in their home environment. The users were able to select from 9 possible destination commands in the automatic mode and from 4 directional commands (forward, backward, turn left and right) in the shared-control mode. These commands were selected via the designed P300 processing system. The wheelchair was steered to the desired location by the implemented navigation system. Safety of the user was ensured during wheelchair navigation due to the included obstacle detection and avoidance features. A combination of P300 and EOG was used as a hybrid BCW system. The user could fully operate the system such as enabling P300 detection system, mode shifting and stop/cancelation command by performing a different consecutive blinks to generate eye blinking patterns. The results revealed that the prototype BCW could be operated in either of the proposed modes. With the new design of the LED-based P300 stimulator, the average accuracies of the P300 detection algorithm in the shared-control and automatic modes were 95.31 and 83.42% with 3.09 and 3.79 bits/min, respectively. The P300 classification error was acceptable, as the user could cancel an incorrect command by blinking 2 times. Moreover, the proposed navigation system had a flexible design that could be interfaced with other assistive technologies. This research developed 3 alternative input modules: an eye tracker module and chin and hand controller modules. The user could select the most suitable assistive technology based on his/her level of disability. Other existing assistive technologies could also be connected to the proposed system in the future using the same protocol.  相似文献   

20.
This paper reviews recent topics of clinical application of functional electrical stimulation (FES) for the paralyzed extremities in Japan. Transcutaneous and percutaneous FES systems have been clinically used in Japan. Candidates of extremity FES arer mostly stroke and spinal cord injury patients. By using percutaneous FES system, all of the joints of the upper extremity including the shoulder have been controlled for activities of daily living in the hemiplegic patient. Simultaneous FES control of the hand and wrist and the bilateral hands have also been achieved in C5 and C6 quadriplegics, respectively. Hybrid FES systems using percutaneous and surface electrodes, where FES is used in combination with orthoses, have been applied to the paraplegics because they are highly practical for assisting their locomotive activities. Percutaneous FES have been also provided the amyotropic lateral sclerosis patients with standing up motion. A total implant FES system with 16 output channels is currently developing as a next generation FES system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号