首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1–4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

3.
毛囊生长周期中,真皮乳头和毛基质间的基质 上皮信号调控细胞的增殖和分化。多功能细胞调控因子胰岛素样生长因子1(IGF1)是该信号路径的成员之一。第1个毛囊生长周期决定着毛囊的正常生长和发育,但IGF1在此期的作用未见报道。实时荧光定量PCR结果显示,IGF1在生长期皮肤中的相对表达量最低,在退化期表达量最高,在静止期表达量又降低。与生长初期相比,IGF1在退化期和静止期的表达量呈差异极显著(P<0.01);胰岛素样生长因子1受体(IGF1R)在生长期皮肤中的相对表达量最高,在退化期表达量最低,而在静止期表达量又升高。与生长初期相比,IGF1R在退化期和静止期的表达量呈差异极显著(P<0.01)。Western 印迹结果显示,IGF1和IGF1R蛋白在小鼠皮肤第1个毛囊生长周期各阶段的表达趋势分别与其mRNA的表达趋势一致;免疫组织化学结果表明,IGF1主要分布在小鼠表皮,而IGF1R免疫阳性在小鼠毛囊毛球部、内外根鞘和毛乳头均有分布。以上实验结果揭示,IGF1和IGF1R在小鼠皮肤第1个毛囊生长周期的各阶段的差异性表达,可能在毛囊生长周期各阶段的转化过程中参与了黑色素的形成。然而,IGF1和IGF1R表达趋势不一致,提示IGF1在小鼠皮肤中发挥作用时,并非只与IGF1R结合才能发挥作用。  相似文献   

4.
The amount and distribution of fibronectin associated with hair follicles was found to vary during the hair growth cycle in the rat. Immunocytochemical staining of follicles in mid-late anagen (the growth stage) revealed the presence of fibronectin in the dermal papilla matrix, in the basement membrane separating this from the epithelial cells of the hair bulb, and in the basement membrane and connective tissue sheath which underly the cells of the outer root sheath. Early in catagen, the transitional stage, staining of the dermal papilla matrix disappeared. Fibronectin persisted in the basement membrane and connective tissue sheath, which undergo corrugation and apparent thickening in catagen. After follicle shortening, the telogen (resting) stage is reached, at which point fibronectin staining was found to be minimal, being restricted to the basement membrane around the secondary germ. The onset of anagen, involving cell division and follicle elongation, was associated with a great increase in the amount of fibronectin in this zone and in and around the dermal papilla. Analysis of entry into anagen by [3H]thymidine incorporation and autoradiography revealed that growth could be detected before the increase in fibronectin expression. However, growing cells, even in a suprabasal position, always had some fibronectin at their surface. Immunoelectron microscopy of early anagen follicles confirmed the light microscopic findings and also showed that fibronectin was present in small vesicles close to the surface of dermal papilla and some epithelial cells. Increased deposition of laminin and type IV collagen in early anagen follicles was also noted, emphasizing the importance of basement membrane components during morphogenetic events in vivo.  相似文献   

5.
The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.  相似文献   

6.
7.
The role and mechanisms of action of insulin-like growth factors (IGFs) in skin remain unclear. Epidermal keratinocytes possess IGF-I receptors and are responsive to IGF-I, which is primarily derived from underlying dermal fibroblasts. IGF binding proteins (IGFBPs), also synthesized by fibroblasts, may be involved in paracrine targeting of IGF-I to its receptors. We therefore examined whether human keratinocytes synthesize IGFBPs and their mRNAs. Following culture in complete medium (containing bovine pituitary extract and epidermal growth factor) Western ligand blotting (WLB) of cell conditioned medium revealed a major band of 32 kD, a less abundant IGFBP of 24 kD at all passages, and a 37–42 kD IGFBP which increased in abundance in late passage. Immunoprecipitation followed by WLB confirmed that the predominant 32 kD band was IGFBP-2. Radioimmunoassay of IGFBP-1, -3, and -6 revealed detectable levels of IGFBP-3 and significant levels of IGFBP-6, but not IGFBP-1. Northern analysis following culture in complete medium revealed that at early passage IGFBP-1, -2, -4, and -6 mRNAs were detectable. IGFBP-3 and -5 mRNAs were not detectable. Following culture in growth factor-free medium a 37–42 kD band, consistent with IGFBP-3, was predominant and a 24 kD band consistent with IGFBP-4 was also present. These data demonstrate the expression of a distinct pattern of IGFBPs by cultured human keratinocytes dependent on culture conditions. Keratinocyte-derived IGFBPs are likely to play a role in the transport and targeting of IGF-I from dermally derived fibroblasts to the epidermis. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The insulin-like growth factor-binding proteins (IGFBPs) comprise a family of six related peptides that interact with high affinity with IGFs. IGFBPs compete with IGF receptors for IGF binding, and as a consequence of this competition they can affect cell growth. In addition, IGF-independent regulatory mechanisms of IGFBPs have been described. Despite their common property to interact with IGFs every IGFBP is expressed in a tightly regulated time- and tissue-specific manner suggesting that each protein may have its own distinct functions. Several transgenic mouse models overexpressing IGFBP-1, -2, -3, or -4 were developed in the past few years. Brain abnormalities were a common feature of IGFBP-1 transgenic models. Individual strains showed alterations in glucose homeostasis, reproductive performance, and a reduction of somatic growth as the most prominent phenotypes. The latter was also the main effect observed in IGFBP-2 transgenic mice. The overexpression of IGFBP-3 under the control of an ubiquitous promoter resulted in selective organomegaly, whereas mammary gland-targeted expression of this protein caused an altered involution after pregnancy in this organ. Tissue-specific overexpression of IGFBP-4 resulted in hypoplasia and reduced weight of smooth muscle-rich tissues such as bladder, aorta, and stomach. This review summarizes the current knowledge about the actions of IGFBPs in vivo based on the presently established transgenic mice.  相似文献   

9.
The insulin-like growth factors (IGFs) are potent mitogens for malignant cell proliferation. The majority of secreted IGFs are bound to specific IGF-binding proteins (IGFBPs) that are secreted by a large number of cells. These proteins may either inhibit or enhance IGF actions. Breast carcinoma cells secrete a variety of IGFBPs. We have previously demonstrated that retinoic acid (RA) inhibition of IGF-l– stimulated MCF-7 cell proliferation is associated with increased IGFBP-3 levels in the conditioned media. We therefore investigated the effect of recombinant IGFBP-3 as well as IGFBP-2, -4 and -5 on IGF-l stimulation of DNA synthesis and IGF-I binding in the MCF-7 human breast carcinoma cell line. IGFBP-2 and -3 enhanced IGF-l stimulation of DNA synthesis in MCF-7 cells while IGFBP-4 and -5 had no effect. Transfection of MCF-7 cells with an IGFBP-3 expression vector resulted in the enhanced secretion of IGFBP-3 with an accompanying increase in IGF-l binding as well as increased cell proliferation upon treatment of the cells with IGF-l. IGF-l preincubation of MCF-7 cells transfected with control pSVneo plasmids results in cells refractory to further IGF-l stimulation of thymidine incorporation while IGF-l continues to stimulate [3H]-thymidine incorporation in IGFBP-3–transfected MCF-7 cells, suggesting that IGFBP-3 protects the cells from IGF-l–mediated down regulation of its receptor. Therefore, IGFBP-3 secreted by MCF-7 cells can enhance IGF-l stimulation of DNA synthesis, increase IGF-l binding to these cells, and prevent IGF-l–induced desensitization of its own receptor, suggesting that IGFBP-3 plays a significant role in IGF-l–mediated breast carcinoma proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The biological activity of IGF-I and -II is controlled by six binding proteins (IGFBPs), preventing the IGFs from interacting with the IGF receptor. Proteolytic cleavage of IGFBPs is one mechanism by which IGF can be released to bind the receptor. The IGFBPs are usually studied individually, although the presence of more than one of the IGFBPs in most tissues suggests a cooperative function. Thus, the IGFBPs are part of regulatory networks with proteolytic enzymes in one end and the IGF receptor in the other end. We have established a model system that allows analysis of the dynamics between IGF, IGFBP-4 and -5, the IGF receptor, and the proteolytic enzyme PAPP-A, which specifically cleaves both IGFBP-4 and -5. We demonstrate different mechanisms of IGF release from IGFBP-4 and -5: cooperative binding to IGF is observed for the proteolytic fragments of IGFBP-5, but not fragments of IGFBP-4. Furthermore, we find that PAPP-A-mediated IGF-dependent cleavage of IGFBP-4 is inhibited by IGFBP-5, which sequesters IGF from IGFBP-4, and that cleavage of both IGFBP-4 and -5 is required for the release of bioactive IGF. Finally, we show that cell surface-localized proteolysis of IGFBP-4 represents the final regulatory step of efficient IGF delivery to the receptor. Our data define a regulatory system in which molar ratios between the IGFBPs and IGF and between the different IGFBPs, sequential proteolytic cleavage of the IGFBPs, and surface association of the activating proteinase are key elements in the regulation of IGF receptor stimulation.  相似文献   

11.
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is critical for normal skeletal development and for bone remodeling and repair throughout the lifespan. In most tissues, IGF actions are modulated by IGF-binding proteins (IGFBPs). IGFBP-5 is the most abundant IGFBP in bone, and previous studies have suggested that it may either enhance or inhibit osteoblast differentiation in culture and may facilitate or block bone growth in vivo. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5 in bone, we studied its effects in differentiating osteoblasts and in primary bone cultures. Purified wild-type (WT) mouse IGFBP-5 or a recombinant adenovirus expressing IGFBP-5WT each prevented osteogenic differentiation induced by the cytokine bone morphogenetic protein (BMP)-2 at its earliest stages without interfering with BMP-mediated signaling, whereas an analog with reduced IGF binding (N domain mutant) was ineffective. When added at later phases of bone cell maturation, IGFBP-5WT but not IGFBP-5N blocked mineralization, prevented longitudinal growth of mouse metatarsal bones in short-term primary culture, and inhibited their endochondral ossification. Because an IGF-I variant (R3IGF-I) with diminished affinity for IGFBPs promoted full osteogenic differentiation in the presence of IGFBP-5WT, our results show that IGFBP-5 interferes with IGF action in osteoblasts and provides a framework for discerning mechanisms of collaboration between signal transduction pathways activated by BMPs and IGFs in bone.  相似文献   

12.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

13.
HM Hu  SB Zhang  XH Lei  ZL Deng  WX Guo  ZF Qiu  S Liu  XY Wang  H Zhang  EK Duan 《PloS one》2012,7(7):e40124
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused premature catagen by up-regulation of TGF β2. Immediately after the premature catagen, the expression of anagen chalone BMP4 increased. The up-regulation of BMP4 may further function to prevent anagen transition and maintain telogen. Interestingly, the hair follicle stem cell niche was not destructed during these drastic structural changes caused by estrogen. Additionally, dermal papilla cells, the estrogen target cells in hair follicles, kept their signature gene expressions as well as their hair inductive potential after estrogen treatment. Retention of the characteristics of both hair follicle stem cells and dermal papilla cells determined the reversibility of the hair cycle suppression. These results indicated that estrogen causes reversible hair cycle retardation by inducing premature catagen and maintaining telogen.  相似文献   

14.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

15.
16.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

17.
Insulin-like growth factor I (IGF-I) is a peptidic growth factor implicated in the proliferation of a wide variety of cell types, and especially endometrial epithelial cells. Its action is modulated by the presence of IGF-binding proteins (IGFBPs) which are secreted by IGF-I target cells. The partition of IGFBPs between cell-associated and soluble form determines the potentiation or the inhibition of IGF-I action. It is commonly accepted that cell-associated IGFBPs potentiate the IGF-I action while the soluble form of IGFBPs has an inhibitory effect. In endometrial adenocarcinoma, IGF-I is involved in tumoral progression and IGFBPs may be key modulators of the IGF-I-induced cell proliferation. Here we showed that the responsiveness of human endometrial adenocarcinoma cells (HEC-IA cell line) to the mitogenic activity of IGF-I was dependent on the pre-incubation conditions. This responsiveness to IGF-I was conditioned by a differential expression of the IGF system components (IGFBPs and IGF-I receptor) and particularly of the IGFBPs. Indeed, the IGF-I-induced proliferation of the HEC-1A cells was attenuated by the presence of cell-associated IGFBPs. Moreover, the IGF-I incubation induced a release of IGFBP-3 in the culture media as the consequence of an interaction between IGF-I and the cell-associated IGFBP-3. This effect was dose-dependent and was associated with the attenuation of the IGF-I action on cellular proliferation. Thus, IGFBP-3 might be initially expressed as a cell-associated form and then released in the interstitial fluid after a direct interaction with IGF-I. Therefore, in HEC-IA endometrial adenocarcinoma cells responsive to IGF-I, the IGFBP-3 is the main binding protein expressed and both soluble and cell-associated forms act as inhibitors of IGF-I-induced cellular proliferation.  相似文献   

18.
We have previously shown that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of skeletal muscle cells in culture, and that these actions in L6A1 muscle cells may be modulated by three secreted IGF binding proteins (IGFBPs), IGFBP-4, -5, and -6. Since we found that the temporal expression pattern of IGFBP-4 and IGFBP-5 differed dramatically during the transition from proliferating myoblasts to differentiated myotubes, we undertook the current study to examine the effects of purified IGFBP-4 and IGFBP-5 on IGF- stimulated actions in L6A1 muscle cells. As has been shown for other cell types, we found that IGFBP-4 had only inhibitory actions, inhibiting IGF-I and IGF-II- stimulated proliferation and differentiation. In contrast, IGFBP-5 exhibited both inhibitory and stimulatory actions. When added in the presence of 30 ng/ml IGF-I, IGFBP-5 (250 ng/ml) inhibited all markers of the early proliferative response: the tyrosine phosphorylation of the cytoplasmic signaling molecules IRS-1 and Shc, the activation of the MAP kinases, ERK1 and 2, the elevation of c-fos mRNA, the early inhibition of the elevation in myogenin mRNA, and the increase in cell number. In contrast, IGFBP-5 stimulated all aspects of the myogenic response to IGF-I: the later rise in myogenin mRNA, the elevation of creatine kinase activity, and the fusion of myoblasts into myotubes. This dual response to IGFBP-5 was greatest when it was added at a molar ratio of IGFBP-5 to IGF-I of 2:1. In contrast, when IGFBP-5 was added in the presence of IGF-II, it inhibited both proliferation and differentiation. Neither IGFBP had any effect when added in the presence of R3 IGF-I, an analog with substantially reduced affinity for IGFBPs. Our results suggest that the role of IGFBP-4 is mainly to sequester excess IGFs, and thus inhibit all actions. IGFBP-5, however, is capable of eliciting a dual response, possibly due to its unique ability to associate with the cell membrane. J. Cell. Physiol. 177:47–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Insulin-like growth factors (IGFs) are crucial for many aspects of development, growth, and metabolism yet control of their activity by IGF-binding proteins (IGFBPs) remains controversial. The effect of IGFBP-1 depends on its phosphorylation status; phosphorylated IGFBP-1 inhibits IGF actions whereas the nonphosphorylated isoform is stimulatory. In order to understand this phenomenon, we purified phosphorylated IGFBP-1 from normal human plasma by immunoaffinity chromatography. Unexpectedly, the resulting preparation enhanced IGF-stimulated 3T3-L1 fibroblast proliferation, due to the presence of a co-purified protein of approximately 700 kDa. Matrix-assisted laser desorption ionization-mass spectrometry and Western immunoblotting analysis identified this co-purified protein as alpha(2)-macroglobulin (alpha(2)M). Anti-alpha(2)M antibodies co-immunoprecipitated IGFBP-1 from human plasma and from (125)I-IGFBP-1.alpha(2)M complexes formed in vitro. The (125)I-IGFBP-1/alpha(2)M association could be inhibited with excess unlabeled IGFBP-1. Surface plasmon resonance analysis indicated that alpha(2)M preferentially associates with the phosphorylated isoform of IGFBP-1 and that when complexed to alpha(2)M, IGFBP-1 can still bind IGF-I. These findings have functional significance since alpha(2)M protects IGFBP-1 from proteolysis and abrogates the inhibitory effect of phosphorylated IGFBP-1 on IGF-I stimulated 3T3-L1 cell proliferation. We conclude that alpha(2)M is a binding protein of IGFBP-1 which modifies IGF-I/IGFBP-1 actions resulting in enhanced IGF effects. In line with its role in regulating the clearance and activity of other growth factors, we predict that alpha(2)M has a novel and important role in controlling the transport and biological activity of IGFs.  相似文献   

20.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号