首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus.  相似文献   

6.
7.
8.
9.
Background information. Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin‐binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin‐associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N‐terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin‐like proteins could act as structural nuclear ABPs in plants. Results. We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α‐ and β‐spectrin chains that cross‐react in plant nuclei. Their role as nuclear ABPs was analysed by co‐immunoprecipitation and IF (immunofluorescence) co‐localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non‐ionic detergent, and in low‐ and high‐salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin‐like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co‐immunoprecipitate and co‐localize with actin. Conclusions. These results reveal that the plant nucleus contains spectrin‐like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin‐like proteins could be involved in multiple nuclear functions.  相似文献   

10.
11.
12.
13.
The eukaryotic cell nucleus is a membrane-enclosed compartment containing the genome and associated molecules supported by a highly insoluble filamentous network known as the nucleoskeleton or nuclear matrix. The nuclear matrix is believed to play roles in maintaining nuclear architecture and organizing nuclear metabolism. Recently, advances in microscopic techniques and the availability of new molecular probes have made it possible to localize functional domains within the nuclear matrix and demonstrate dynamic interactions between both soluble and insoluble components involved in the control of multiple nuclear transactions. Like the cytoplasm and its skeleton, the nucleoplasm is highly structured and very crowded with an equally complex skeletal framework. In fact, there is growing evidence that the two skeletal systems are functionally contiguous, providing a dynamic cellular matrix connecting the cell surface with the genome. If we impose cell cycle dynamics upon this skeletal organization, it is obvious that the genome and associated nuclear matrix must undergo a major structural transition during mitosis, being disassembled and/or reorganized in late G2 and reassembled again in daughter nuclei. However, recent evidence from our laboratory and elsewhere suggests that much of the nuclear matrix is used to form the mitotic apparatus (MA). Indeed, both facultative and constitutive matrix-associated proteins such as NuMA, CENP-B, CENP-F, and the retinoblastoma protein (Rb) associate within and around the MA. During mitosis, the nuclear matrix proteins may either become inert “passengers” or assume critical functions in partitioning the genome into newly formed G1 nuclei. Therefore, we support the view that the nuclear matrix exists as a dynamic architectural continuum, embracing the genome and maintaining cellular regulation throughout the cell cycle. © 1996 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
高等真核细胞的染色体DNA通过基质结合区(MAR)不时地与核基质特异性结合而组织成一种空间环状结构。为了研究以DNA套环形式附着于核基质上的DNA序列的特性,从处于泌乳期的乳腺组织中克隆了多个MAR DNA序列。体外结合实验表明,这些序列能够同核基质蛋白共结合成不溶性的复合物,这些复合物可较容易的通过离心去除。其中,两个MAR序列中包含有TL、CA—和GA—阻断以及ATTA基序。这两个序列中含有多个复制/转录因子的结合位点、增强子基序、多个完全的和非完全的反向重复序列以及潜在的DNA弯曲核心序列样结构。同一DNA序列中存在不同元件的组合可能说明在控制一系列细胞的发育过程中,它们可能发挥有正的或负的调控元件的功能。  相似文献   

17.
In the accompanying report (C. F. Webb, C. Das, S. Eaton, K. Calame, and P. Tucker, Mol. Cell. Biol. 11:5197-5205, 1991), we characterize B-cell-specific protein-DNA interactions at -500 and -200 bp upstream of the mu immunoglobulin heavy chain promoter whose abundances were increased by interleukin-5 plus antigen. Because of the high A + T/G + C ratio of these sequences and the consistent findings by others that enhancer- and promoterlike regions are often located near matrix-associated regions, we asked whether these sequences might also be involved in binding to the nuclear matrix. Indeed, DNA fragments containing the -500 binding site were bound by nuclear matrix proteins. Furthermore, UV cross-linking studies showed that the DNA binding site for interleukin-5-plus-antigen-inducible proteins could also bind to proteins solubilized from the nuclear matrix. Nuclear matrix-associated sequences have also been demonstrated on either side of the intronic immunoglobulin heavy chain enhancer. Our data suggest a topological model by which interactions among proteins bound to the promoter and distal enhancer sequences might occur.  相似文献   

18.
阐述了凋亡过程中,核基质所发生的形态、生化变化及相关凋亡基因的表达,尤其是凋亡早期便出现核基质蛋白的降解.核基质是细胞核最基本的组分,对维持细胞核形态结构和功能非常重要,其主要由核纤层,核内骨架及核孔复合体构成,在DNA复制、转录、RNA加工转运等事件中起支持作用.多少年来,关于凋亡时细胞核形态及生化改变的分子机理一直未阐明,最近对核基质与细胞凋亡的研究取得了重大进展.  相似文献   

19.
Dinoflagellate is one of the primitive eukaryotes,whosenucleus may represent one of the transition stages fromprokaryotic nucleoid to typical eukaryotic nucleus.Usingselective extraction together with embeddment-free sectionand whole mount electron microscopy,a delicate nuclearmatrix filament network was shown,for the first time,indinoflagellate Crypthecodinium cohnii nucleus.Chromosomeresidues are connected with nuclear matrix filaments to forma complete network spreading over the nucleus.Moreover,we demonstrated that the dinoflagellate chromosome retainsa protein scaffold after the depletion of DNA and solubleproteins.This scaffold preserves the characteristic mor-phology of the chromosome.Two dimensional elec-trophoreses indicated that the nuclear matrix and chromo- some scaffold are mainly composed of acidic proteins.Ourresults demonstrated that a framework similar to the nuclearmatrix and chromosome scaffold in mammalian cells appearsin this primitive eukaryote,suggesting that these structuresmay have been originated from the early stages of eukaryoteevolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号