首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larvae of the spider crab Hyas araneus were reared in the laboratory from hatching through to metamorphosis. Neurogenesis was recorded in the ventral nerve cord during development of successive larval stages, zoea 1, zoea 2, megalopa and crab 1. Proliferating cells were detected immunocytochemically after in vivo labelling with 5-bromo-2-deoxyuridine (BrdU) which, as a thymidine analogue, is incorporated into the DNA of dividing cells. Segmental sets of mitotically highly active neuroblasts were found in newly hatched larvae. A dorsal neuroblast, a ventral-median neuroblast, 3–6 anterior-ventral neuroblasts and 1–3 lateral neuroblasts could be distinguished in each thoracic ganglion. Significantly fewer neuroblasts were labelled in the suboesophageal ganglion as compared to the thoracic ganglia. The number of active labelled neuroblasts was high throughout zoea 1 and about 30% of zoea 2 development and then dramatically decreased towards premetamorphosis. In the newly moulted megalopa, only a reduced set of neuroblasts was labelled which ceased dividing within the first few days of megalopa development. There is an indication that, although most ganglion mother cells born by unequal division of neuroblasts may go through their final division at an early stage, certain clusters of ganglion mother cells obviously delay their final mitosis. These results are discussed with regard to neuronal integration which necessarily changes during the course of metamorphosis in relation to the altered behavioural repertoire of the larvae.  相似文献   

2.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   

3.
The following protistan diets were tested on blue crab larvae: the algae Isochrisis galbana Parke, Monochrisis lutheri Droop, Dunaliella sp., and an unknown mixture; and the ciliated protozoans Euplotes vannus Muller and Parauronema virginianum(2/1) Thompson. None of these diets resulted in development past the first zoea stage, although some apparently were ingested and delayed mortality as compared to unfed controls.The rotifer Brachionus plicatilis Müller sustained good survival through early zoea development; however, rotifer-fed larvae did not metamorphose to the megalopa. Larvae of the polychaete Hydroides dianthus (Verrill) sustained crab larvae throughout zoea development, resulting in 17% survival to metamorphosis. The percentage mortality per stage was significantly lower in polychaete-fed larvae when compared with rotifer-fed larvae during zoea stages III, VI, and VII. Mean intermolt duration varied between diet treatments during the first three stages, but showed no differences during later zoea development. In tests on groups of late stage sibling larvae, Artemia salina L. nauplii gave development to metamorphosis, whereas rotifers did not.All the diets so far tested on blue crab larvae are classified according to their ability to sustain development. It is demonstrated that the two diets which allow completed development, Hydroides dianthus larvae and Artemia salina nauplii, contain 2–3 times as much lipid per dry weight as do rotifers. A metabolic requirement for lipid late in development may be indicated. Invertebrate larvae derived from yolky telolecithal and centrolecithal eggs may be an important dietary component for brachyuran larvae.  相似文献   

4.
Larvae of the crab Chasmagnathus granulata were collected in a salt marsh located in the Lagoa dos Patos, Brazil and reared from eclosion to metamorphosis under different dietary regimes. Larvae reared individually in beakers of 40 ml and fed Tetraselmis chuii (zoea III and zoea IV), showed a supplementary stage, here designated as zoea V, with morphological characteristics intermediary between zoea IV and megalopa. No zoeae V molted to megalopa stage. To confirm the occurrence of the supplementary stage, mass cultures of larvae of C. granulata were fed Artemia sp. at high densities, we again detected the fifth zoeal instar. However, when zoeae V were individually placed in beakers and fed Artemia nauplii, they succeeded in molting into megalopae. We observed the occurrence of two types of zoeae IV — a smaller type (from which originated the zoeae V) and a larger type (which directly developed into megalopae). We conclude that stressful nutritional/environmental conditions were responsible for the occurrence of this alternative path of development.  相似文献   

5.
The entire cycle of larval development of the spider crab Pugettia quadridens (de Haan, 1850) (Decapoda: Majidae), widespread in Peter the Great Bay (Sea of Japan) is studied under the laboratory conditions. The development cycle of this species comprises prezoea, zoea I, zoea II, and megalopa. At a temperature of 18–20° C larval development took from 11 to 15 days. Zoea II is described in detail for the first time. Many morphological characters are found distinguishing zoea and megalopa of P. Quadridens in Russian waters from the larvae of this species in Japanese and Korean waters. Some characters of larvae are similar in P. Quadridens and the related species of the genus Pugettia. The larvae of P. Quadridens occur in the plankton of Vostok Bay from late June to late October with a density up to 5 ind/m3 at a surface water temperature of 13–21°C. They are easily distinguished from the other brachyuran larvae of this region by the absence of lateral spines on the carapace.Original Russian Text Copyright © 2004 by Biologiya Morya, Kornienko, Korn.  相似文献   

6.
Summary

Two zoeae and the megalopa of the majid crab Macropodia parva were obtained from laboratory material. At 25±1°C and 35% salinity, the first crab appeared 12 days after hatching; survival to the first crab instar was 27%. The larval stages are described in detail and compared with those of the previously described species of the genus Macropodia. Zoeal characteristics of M. parva that differentiate it from other known Macropodia larvae are the naked telson furcae and the absence, in zoea II, of the exopodal setae on the basis of the maxillule.  相似文献   

7.
Larvae of the spider crabHyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate (F), oxygen consumption (R), nitrogen excretion (U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight (W), carbon (C), nitrogen (N), hydrogen (H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. AverageF was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). MaximumF in the megalopa was observed still earlier, during postmoult. Respiration (R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation inF andR during larval development confirm results obtained in previous studies onH. araneus and other decapod species. Excretion (U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomicO/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than protein, whereas an inverse growth patterns is typical of the later (premoult) stages. These two different growth phases are interpreted as periods dominated by reserve accumulation in the hepatopancreas, and epidermal growth and reconstruction (morphogenesis), respectively. Differences between individual larval instars in average biochemical composition and growth patterns may be related to different strategies: the zoeal instars and the early megalopa are pelagic feeding stages, accumulating energy reserves (principally lipids) necessary for the completion of larval development, whereas the later (premoult) megalopa is a semibenthic settling stage that converts a significant part of this energy to epidermal protein. The megalopa shifts in behaviour and energy partitioning from intense feeding activity and body growth to habitat selection and morphogenesis, preparing itself for metamorphosis, i.e. it shows an increasing degree of lecithotrophy. Data from numerous parallel elemental and biochemical analyses are compiled to show quantitative relationships betweenW, C, N, H, lipid, and protein. These regressions may be used as empirical conversion equations for estimates of single chemical components in larvalHyas araneus, and, possibly, other decapods.  相似文献   

8.
Larval development of the spider crab, Pisoides bidentatus (A.Milne-Edwards, 1873) (Decapoda: Majoidea: Pisidae), inhabitingthe Russian waters of the Sea of Japan is described and illustratedfor the first time from larvae reared in the laboratory. Thedevelopment included two zoea and one megalopa, thus followingthe typical pattern in the Majoidea. At a temperature of 20–22°Clarval development of P. bidentatus took from 9 to 13 days.The comparative analysis revealed that the larvae of two Pisoidesspecies differ in numerous characters whereas zoea of P. bidentatusand Pugettia quadridens belonging to different families arenearly identical. According the larval characters, P. bidentatusand P. quadridens should be assigned to one genus. The larvaldata lend the support to revision the taxonomic position ofP. bidentatus.  相似文献   

9.
10.
Three kinds of diet were used to identify the critical periods of nutritional vulnerability during larval development of the portunid crab, Callinectes sapidus Rathbun. A diet consisting solely of the rotifer Brachionus plicatilis Müller is not sufficient for complete developmetn. Development to metamorphosis can occur if rotifers are replaced by Day 15 with Artemia salina L. nauplii, but a diet of A. salina between Days 15 and 21 is also not sufficient for complete development. Delay in giving a brine shrimp diet beyond Day 15 causes a reduction in survival to the megalopa with an apparent threshold between Days 22 and 29, delay in molting in late instars, and increased frequency of supernumeracy larvae, many of which molt subsequently to the megalopa. Development to the megalopa on the rotifer diet is possible if crab larvae are initially fed a favorable control diet for as little as 14 days after hatching. Extension of time on the control increases survival to the megalopa slightly, has little effect on molt frequency, but reduces the number of zoeal instars.These data are interpreted in the context of identification of the unknown dietary requirement and for its implication to evolution of reproduction in the Brachyura.  相似文献   

11.
Mushroom bodies (MB) are insect brain centers involved in learning and other complex behaviors and they are particularly large in ants. We describe the larval and pupal development of the MB in the carpenter ant, Camponotus japonicus. Based on morphological cues, we characterized the stages of preimaginal development of worker ants. We then describe morphological changes and neurogenesis underlying the MB development. Kenyon cells are produced in a proliferation cluster formed by symmetrical division of MB neuroblasts. While the duration of larval instars shows great individual variation, MB neuroblasts increase in number in each successive larval instar. The number of neuroblasts increases further during prepupal stages and peaks during early pupal stages. It decreases rapidly, and then neurogenesis generally ceases during the mid pupal stage (P4). In contrast to the larval period, the MB development of individuals is highly synchronized with physical time throughout metamorphosis. We show that carpenter ants (C. japonicus) have approximately half as many MB neuroblasts than are found in the honey bee Apis mellifera. Mature MBs of carpenter ants and honey bees reportedly comprise almost the same number of neurons. We therefore suggest that the MB neuroblasts in C. japonicus divide more often in order to produce a final number of MB neurons similar to that of honey bees.  相似文献   

12.
Analysis of early neurogenesis in the spider Cupiennius salei (Chelicerata, Aranea, Ctenidae) has shown that the cells of the central nervous system are recruited from clusters of cells that invaginate from the neuroectoderm. This is in contrast to Drosophila, where only single cells delaminate and become neuroblasts, the stem cells of the nervous system. In order to compare the processes further, we have cloned homologues of the pan-neural Drosophila genes prospero and snail from the spider and have analysed their RNA and protein expression pattern. We find that snail expression is transient and only a subset of neural cells expresses Snail protein at any given time, making it difficult to assess whether it is indeed a pan-neural gene in the spider. Prospero protein expression, on the other hand, is seen in all invaginating cells and continues throughout differentiation of the neurons. In contrast to Drosophila, asymmetric localization cannot be detected, even in cells that still divide. Our results provide no evidence for neuroblasts or stem cells in the spider, although there are a limited number of mitoses in the cells that are derived from the invaginating clusters. These aspects of spider neurogenesis are more similar to the neurogenesis process known from vertebrates.Edited by P. Simpson  相似文献   

13.
14.
Larval development in crabs is characterized by a striking double metamorphosis in the course of which the animals change from a pelagic to a benthic life style. The larval central nervous system has to provide an adequate behavioural repertoire during this transition. Thus, processes of neuronal reorganization and refinement of the early larval nervous system could be expected to occur in the metamorphosing animal. In order to follow identified sets of neurons throughout metamorphosis, whole mount preparations of the brain and ventral nerve cord of laboratory reared spider crab larvae (Hyas araneus) were labelled with an antibody against the neurotransmitter serotonin. The system of serotonin-immunoreactive cell bodies, fibres and neuropils is well-developed in newly hatched larvae. Most immunoreative structures are located in the protocerebrum, with fewer in the suboesophaegeal ganglia, while the thoracic and abdominal ganglia initially comprise only a small number of serotonergic neurons and fibres. However, there are significant alterations in the staining pattern through larval development, some of which are correlated to metamorphic events. Accordingly, new serotonin-immunoreactive cells are added to the early larval set and the system of immunoreactive fibres is refined. These results are compared to the serotonergic innervation in other decapod crustaceans.  相似文献   

15.
Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species,Cyrtograpsus angulatus andChasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November–December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans (Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanidPachycheles haigae) were also found occasionally. Caridean shrimp (Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m−3. The highest larval abundance was recorded inC. angulatus, with almost 8000°m−3. Significantly moreC. angulatus andC. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency ofC. granulata in low salinities (≤12‰) and at a particular sampling site may be related to local distribution patterns of the reproducing adult population. Unlike crab larvae, those of shrimp (P. argentinus) are retained inside the lagoon, where they develop from hatching through metamorphosis. They significantly prefer low salinity and occur at the lagoon surface more often at night. These patterns cannot be explained by larval release rhythms like those in brachyuran crabs, but may reflect diel vertical migrations to the bottom. It is concluded that osmotic stress as well as predation pressure exerted by visually directed predators (small species or life-cycle stages of estuarine fishes) may be the principal selection factors for the evolution of hatching and migration rhythms in decapod larvae, and that these are characteristics of export or retention mechanisms, respectively.  相似文献   

16.
  • 1.1. Larvae of the bromeliad crab, Metopaulias depressus Rathbun, were reared in the laboratory, and changes in dry weight (W), ash-free W (AFW), carbon, nitrogen, hydrogen, protein, lipid, carbohydrates and respiration rate were measured during development from hatching to metamorphosis.
  • 2.2. Development was successful in rain-water from bromeliads (pH < 5–6), but not in river water from the same region (pH 8). It is abbreviated, with two non-feeding zoeal stages (2.5–3.5 days each) and a feeding megalopa (8.5–10 days). Development to metamorphosis can also be completed in the absence of food (facultative lecithotrophy).
  • 3.3. Dry weight and other absolute biomass values per individual vary significantly between different hatches, whereas changes in the relative (% of W or AFW) composition follow quite invariable patterns: ash increases from hatching through the first part of megalopa development, organic biomass decreases concurrently.
  • 4.4. Elemental and biochemical data show that lecithotrophy of the zoeal stages as well as continued endotrophic development in the megalopa depend chiefly on degradation of lipid reserves and less on protein. No significant growth was observed in organic constituents when food was available, but without food the megalopa reached metamorphosis with only half the lipid and less than two thirds the protein of fed siblings.
  • 5.5. The relationship between C and lipid is similar in M. depressus larvae as in planktotrophic marine crab larvae, whereas that between N and protein differs; it indicates the presence of unusually large quantities of unidentified non-protein N.
  • 6.6. Exuvial losses of late premoult biomass or energy are very low in the zoeal stages (2 and 3%), but increase in the megalopa (16% in W, 10% in C, 7–8% in N, H and energy).
  • 7.7. Respiration rate per individual increases gradually during larval development (0.6–0.8 μg O2/hr). Starved megalopa larvae reveal lower individual but higher W-specific metabolism than fed larvae.
  • 8.8. Bioenergetic traits of abbreviated larval development are discussed in relation to those known from regular (planktotrophic marine) development of brachyuran crabs. M. depressus is highly adapted to life and development in a physically extreme terrestrial environment.
  相似文献   

17.
We describe the morphology of the foregut of the spider crab Maja brachydactyla Balss, 1922, from first larval stage to adult, with detailed stage‐specific documentation using light and scanning electron microscopy. A total of 40 ossicles have been identified in the foregut of adults of M. brachydactyla using Alizarin‐Red staining. The morphological pattern of the ossicles and gastric mill is very similar to other Majoidea species with only a few variations. The foregut of the zoeae stages appeared as a small and simple cavity, with a cardio‐pyloric valve that separates the stomach into cardiac and pyloric regions. The pyloric filter is present from the first zoea, in contrast to the brachyuran species which have an extended larval development. Calcified structures have been identified in the cardio‐pyloric valve and pyloric region of the zoeal stages. The most significant changes in foregut morphology take place after the metamorphosis from ZII to megalopa, including the occurrence of the gastric mill. In the megalopa stage, the foregut ossicles are recognizable by their organization and general morphology, but are different from the adult phase in shape and number. Moreover, the gastric teeth show important differences: the cusps of the lateral teeth are sharp (no molariform); the dorsal tooth have a small, dentate cusp (not a well‐developed quadrangular cusp); and the accessory teeth are composed of one sharp peak (instead of four sharp peaks). The gastric mill ontogeny from megalopa to adult reveals intermediate morphologies during the earlier juvenile stages. The relationship between gastric mill structures with food preferences and their contribution to the brachyuran phylogeny are briefly discussed. J. Morphol. 276:1109–1122, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
  • 1.1. Lipofuscin, body carbon and respiration rates were measured in Hyas araneus from hatching to metamorphosis. Lipofuscin was measured spectrofluorometrically from the chloroform phase of chloroform/methanol extracts.
  • 2.2. Excitation/emission spectra of both the chloroform and the methanol/aqueous phase showed one distinct fluorescence peak in the chloroform (410–415 nm emission/340–350 nm excitation) and the methanol/aqueous phase (405/350 nm) of zoea I (directly after hatching) and megalopa (0 and 24 days old).
  • 3.3. Individual lipofuscin concentrations increased continuously during zoea I and halfway through zoea II, but remained constant through the entire megalopa despite high metabolic activity in this stage.
  • 4.4. Individual lipofuscin concentrations were positively correlated with body carbon and carbonspecific lipofuscin was negatively correlated.
  • 5.5. Moulting caused considerable loss of lipofuscin. During the first two larval ecdyses 17–18% were lost, with the shed moults containing only 3.4–4.5% of the lipofuscin found in late premoult individuals.
  • 6.6. The different patterns of lipofuscin accumulation in respective larval stages is discussed in regard to mitotic activity of tissues. While in the zoea, growth is more related to lipid formation and biomass accumulation, in the megalopa morphogenetic processes require substantial epidermal growth, i.e. protein accumulation. However, the question why in the megalopa no increase in lipofuscin is found, remains unanswered.
  相似文献   

19.
During the larval development of the subantarctic king crab, Lithodes santolla, and stone crab, Paralomis granulosa, we compared changes in the carbon, fatty acid and protein contents of larvae reared under constant conditions from hatching to metamorphosis, either in presence or absence of food (Artemia spp. nauplii). In both species the feeding condition had no influence on any of the chemical parameters studied, indicating a fully lecithotrophic (i.e. non-feeding) mode of development from hatching of the first zoea to metamorphosis of the late megalopa. Dry mass and carbon contents at hatching were similar in the larvae of both species, but L. santolla contained initially higher total amounts of fatty acids and protein than P. granulosa. Both species utilized considerable portions of their total fatty acid pool which decreased logarithmically throughout the time of development. At metamorphosis, it was almost exhausted in P. granulosa, while L. santolla had consumed only about 60%. Protein utilization, in contrast, was higher in L. santolla (40%) than in P. granulosa (20%). Triacylglycerol was the principal storage lipid in both species, accounting initially for about 75% of the lipid fraction; it was strongly utilized during larval development. Phospholipid constituted the second largest lipid class; it also decreased in P. granulosa, but to a lesser extent in L. santolla. The major fatty acids of both species were 18:1(n−9), 20:5(n−3) and 16:0 as well as, in lower proportions, 18:1(n−7), 22:6(n−3), 16:1(n−7) and 18:0. Monounsaturated fatty acids represented the dominant group in L. santolla, whereas P. granulosa contained similar amounts of mono- and polyunsaturated fatty acids. In L. santolla, monounsaturated fatty acids, especially 16:1(n−7), were preferentially utilized as compared to polyunsaturates. Due to a particularly strong lipid utilization in P. granulosa, all individual fatty acids were largely depleted at metamorphosis, showing similar extents of consumption. L. santolla had higher initial lipid and protein stores that seem to be used more economically as compared to P. granulosa.  相似文献   

20.
Changes in biomass and elemental composition (dry mass, W; carbon, C; nitrogen, N; hydrogen, H) were studied in the laboratory during complete larval and early juvenile development of the southern king crab, Lithodes santolla (Molina), formerly known as Lithodes antarcticus (Jacquinot). At 6±0.5 °C, total larval development from hatching to metamorphosis lasted about 10 weeks, comprising three demersal zoeal stages and a benthic megalopa, with mean stage durations of 4, 7, 11 and 47 days, respectively. No differences in development duration or mortality were observed in larvae either fed with Artemia sp. nauplii or unfed, indicating that all larval stages of L. santolla are lecithotrophic. First feeding and growth were consistently observed immediately after metamorphosis to the first juvenile crab stage. Regardless of the presence or absence of food, W, C, N and H decreased throughout larval development. Also the C:N mass ratio decreased significantly, from 7.7 at hatching to 4.1 at metamorphosis, indicating that a large initial lipid store remaining from the egg yolk was gradually utilized as an internal energy source, while proteins played a minor role as a metabolic substrate. In total, 56-58% of the initial quantities of C and H present at hatching, and 20% of N were lost during nonfeeding larval development to metamorphosis. Nine to ten percent of the initially present C, N and H were lost with larval exuviae, half of these losses occurring in the three zoeal stages combined and another half in the megalopa stage alone. Metabolic biomass degradation accounted for losses of about 47-50% in C and H but for only 10% in N. Hence, most of the losses in C and H reflected metabolic energy consumption (primarily lipid degradation), while about half of the losses in N and two thirds of those in W were due to larval exuviation. Complete independence from food throughout larval development is based on an enhanced maternal energy investment per offspring and on energy-saving mechanisms such as low larval locomotory activity and low exuvial losses. These traits are interpreted as bioenergetic adaptations to food-limited conditions in Subantarctic regions, where a pronounced seasonality of day length limits the period of primary production, while low temperatures enforce a long duration of pelagic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号