首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies were undertaken to determine whether colony stimulating factor-1 (CSF-1) stimulates hemopoietic cell proliferation and differentiation in vivo. Groups of mice were injected with 25,000 units of pure, endotoxin-free L-cell CSF every 6 hours for intervals up to 8 days. Virtually no changes were detected in blood neutrophils or monocytes. No consistent increases in marrow granulopoiesis were noted. Variable but inconsistent changes in marrow and splenic progenitor cells were noted. Serum CSF was elevated 2 hours after injection but returned to baseline values within 4-6 hours. These studies indicate essentially no effect from exogenous administration of purified CSF; however, higher doses of this factor will be required in further studies.  相似文献   

2.
Colony stimulating factor-1 (CSF-1) is the primary regulator of the mononuclear phagocytic lineage acting through its transmembrane tyrosine kinase receptor, CSF-1R, that is the product of the c-fms proto-oncogene. Null mutations in either the ligand or the receptor genes result in a severe osteopetrosis as well as a number of other phenotypes, including reproductive defects and perturbations in organ development. The CSF-1R is also expressed in oocytes, myoblast progenitors, decidual, and trophoblastic cells. To distinguish cell type specific phenotypes, we have created a conditional allele of the Csf1r by placing LoxP sites around Exon 5 of the Csf1r gene in mice. Excision of this floxed sequence results in a null allele that in the homozygous state gives a phenotype indistinguishable of the complete Csf1r null mutant mouse. This conditional allele will prove extremely valuable to study the spatial and temporal roles of CSF-1R.  相似文献   

3.
Colony stimulating factor-1 (CSF-1) is a homodimeric glycoprotein that humorally regulates the proliferation and differentiation of mononuclear phagocytic cells and locally regulates cells of the female reproductive tract. Alternative splicing of the human CSF-1 mRNA leads to alternative expression of the CSF-1 homodimer as a secreted glycoprotein or as a membrane-spanning molecule with cell surface biological activity. In the present study, analysis of immunoaffinity-purified CSF-1 from mouse L929 cell medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that CSF-1 is predominantly secreted as highly sulfated species of 375- and 250-kDa with a smaller amount of a 100-kDa species. Analysis by gel filtration in 4 M guanidine HCI buffer, indicated that, in contrast to the 100-kDa species, the highly sulfated species exhibit anomalously high molecular weights and self-association on SDS-PAGE similar to the dermatan sulfate proteoglycan, biglycan. The three predominant CSF-1 species were shown to be an 80-kDa homodimer, an 80-kDa/50-kDa heterodimer, and a 50-kDa homodimer. The 80-kDa subunit contained a single 18-kDa chondroitin sulfate chain that was absent from the 50-kDa subunit. Furthermore, treatment of the 80- and 50-kDa subunits, synthesized in the presence of tunicamycin, with chondroitinase ABC, neuraminidase, and endo-alpha-N-acetyl galactosaminidase reduced their apparent molecular masses to 60 and 25 kDa, respectively. These results are consistent with intracellular proteolytic cleavage of the 80-kDa chondroitin sulfate containing subunits from the membrane spanning CSF-1 precursor at a point carboxyl-terminal to the single consensus sequence for glycosaminoglycan addition and cleavage of the 50-kDa glycoprotein subunit at a position aminoterminal to this site. The predominance of the proteoglycan form of secreted CSF-1, which represents only 3-4% of the total trichloroacetic acid-precipitable counts released from 35SO4(2-)-labeled L cells, has important implications for regulation by this growth factor.  相似文献   

4.
5.
Previous studies have shown that colony stimulating factor-1 (CSF-1) deficiency dramatically reduced atherogenesis in mice. In this report we investigate this mechanism and explore a therapeutic avenue based on inhibition of CSF-1 signaling. Lesions from macrophage colony stimulating factor-1 (Csf1)+/− mice showed increased numbers of apoptotic macrophages, decreased overall macrophage content, and inflammation. In vitro studies indicated that CSF-1 is chemotactic for monocytes. Bone marrow transplantation studies suggested that vascular cell-derived, rather than macrophage-derived, CSF-1 is responsible for the effect on atherosclerosis. Consistent with previous studies, CSF-1 affected lesion development in a dose-dependent manner, suggesting that pharmacological inhibition of CSF-1 might achieve similar results. Indeed, we observed that treatment of hyperlipidemic mice with a CSF-1 receptor kinase inhibitor inhibited plaque progression. This observation was accompanied by a reduction in the expression of adhesion factors (ICAM-1), macrophage markers (F4/80), inflammatory cytokines (Il-6, Il-1β), and macrophage matrix degradation enzymes (MMP-9). We conclude that the M-CSF pathway contributes to monocyte recruitment and macrophage survival and that this pathway is a potential target for therapeutic intervention.  相似文献   

6.
Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats.  相似文献   

7.
8.
Granulocyte-macrophage colony stimulating factor (GMCSF), a multifunctional cytokine can enhance immune responses when administered along with DNA vaccine. Aim of the present study was to clone and express the chicken GMCSF cytokine for use as 'genetic adjuvant'. Chicken GMCSF gene 435bp was amplified using specific primers in which restriction sites of BamHI and HindIII were at forward and reverse primers respectively. The PCR product was cloned into eukaryotic expression vector pcDNA 3.1(+) and clones were confirmed by restriction digestion and nucleotide sequencing. Functional activity of recombinant GMCSF was checked by expression of GMCSF specific mRNA in transfected Vero cells by RT-PCR of total RNA isolated from transfected Vero cells. The recombinant plasmid can be used as genetic adjuvant in chicken.  相似文献   

9.
 Osteopetrosis in laboratory animals is a metabolic bone disease characterized by increased skeletal mass. It is inherited as an autosomal recessive and results from a defect in the development and/or function of osteoclasts. We studied two enzymes essential for bone resorption, carbonic anhydrase II isoenzyme (CA II) and H+-ATPase, in osteoclasts from four osteopetrotic mutations in the rat; namely incisors-absent (ia), osteopetrosis (op), toothless (tl), and microphthalmia (mib), to test the hypothesis that reduced bone resorption in one or more of these mutations results from defects in the synthesis or activity of one of these enzymes. CA II was present in most osteoclasts from normal, tl, op, and mib littermates and was homogeneously distributed in cytoplasm. CA II staining in ia osteoclasts was more variable and less intense than in the other mutations. H+-ATPase was also present in osteoclasts from normal animals and mutants and immunostaining showed clear polarization to the ruffled border region in all normal rats and mutants except ia, which showed diffuse distribution of staining in the cytoplasm. H+-ATPase activity (proton transport) in a related tissue, kidney, was normal in tl and ia rats but increased in op and mib rats compared to their normal littermates. These results suggest that the osteoclasts in osteopetrotic rat mutations are not abnormal with respect to the distribution of CA II and H+-ATPase and that the function of these enzymes in the skeleton, while likely normal, needs to be tested directly in bone. Accepted: 25 September 1998  相似文献   

10.
Colony stimulating factor-1 (CSF-1) (or macrophage CSF) is involved in the survival, proliferation, differentiation, and activation of cells of the monocyte/macrophage lineage. Because the mitogen-activated protein kinase family members extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinase are widely implicated in such cellular functions, we measured their activity in growing and growth-arrested cultures of bone marrow-derived macrophages (BMM), as well as their stimulation by saturating concentrations of CSF-1. ERK activity was approximately 2-fold higher in cycling BMM compared with growth-arrested BMM; in addition, CSF-1-stimulated BMM DNA synthesis was partially inhibited by PD98059, a specific inhibitor of MEK activation, suggesting a role for a mitogen-activated protein-ERK kinase (MEK)/ERK pathway in the control of DNA synthesis but surprisingly not in the control of cyclin D1 mRNA or c-myc mRNA expression. The suppression of BMM apoptosis by CSF-1, i.e. enhanced survival, was not reversed by PD98059, suggesting that a MEK/ERK pathway is not involved in this process. Using a quantitative kinase assay, it was found that CSF-1 gave a slight increase in BMM p38 activity, supporting prior data that CSF-1 is a relatively weak stimulator of inflammatory cytokine production in monocytes/macrophages. Relatively high concentrations of the p38 inhibitor, SKB202190, suppressed CSF-1-stimulated BMM DNA synthesis. No evidence could be obtained for the involvement of p38 activity in BMM apoptosis following CSF-1 withdrawal. We were not able to show that CSF-1 enhanced BMM JNK-1 activity to a significant extent; again, no role could be found for JNK-1 activity in the BMM apoptosis occurring after CSF-1 removal.  相似文献   

11.
Technologies for in vitro embryo production have the potential to enhance the efficiency of cattle production systems. However, utilization of in vitro-produced embryos for transfer remains limited throughout much of the world. Despite improvements over the past two decades, problems associated with the production of bovine embryos in vitro still exist which limit the widespread commercial application of this technology. In particular, bovine embryos produced in vitro have a reduced capacity to establish and maintain pregnancy as compared with their in vivo-derived counterparts. Embryo competence for survival following transfer is improved by in vivo culture in the sheep oviduct, thus indicating that standard embryo culture conditions are sub-optimal. Therefore, one strategy to improve post-transfer survival is to modify embryo culture media to more closely mimic the in vivo microenvironment. The maternal environment in which the bovine embryo develops in vivo contains various growth factors, cytokines, hormones, and other regulatory molecules. In addition to affecting bovine embryo development in vitro, recent research indicates that embryo competence for survival following transfer can also be improved when such molecules are added to embryo culture medium. Among the specific molecules that can increase post-transfer embryo survival are insulin-like growth factor-1 (IGF-1), colony stimulating factor-2 (CSF-2) and hyaluronan. This paper will review the effects IGF-1, CSF-2 and hyaluronan on post-culture embryo viability and discuss the potential mechanisms through which each of these molecules improves post-transfer survival.  相似文献   

12.
《Theriogenology》2012,77(9):1602-1609
Technologies for in vitro embryo production have the potential to enhance the efficiency of cattle production systems. However, utilization of in vitro-produced embryos for transfer remains limited throughout much of the world. Despite improvements over the past two decades, problems associated with the production of bovine embryos in vitro still exist which limit the widespread commercial application of this technology. In particular, bovine embryos produced in vitro have a reduced capacity to establish and maintain pregnancy as compared with their in vivo-derived counterparts. Embryo competence for survival following transfer is improved by in vivo culture in the sheep oviduct, thus indicating that standard embryo culture conditions are sub-optimal. Therefore, one strategy to improve post-transfer survival is to modify embryo culture media to more closely mimic the in vivo microenvironment. The maternal environment in which the bovine embryo develops in vivo contains various growth factors, cytokines, hormones, and other regulatory molecules. In addition to affecting bovine embryo development in vitro, recent research indicates that embryo competence for survival following transfer can also be improved when such molecules are added to embryo culture medium. Among the specific molecules that can increase post-transfer embryo survival are insulin-like growth factor-1 (IGF-1), colony stimulating factor-2 (CSF-2) and hyaluronan. This paper will review the effects IGF-1, CSF-2 and hyaluronan on post-culture embryo viability and discuss the potential mechanisms through which each of these molecules improves post-transfer survival.  相似文献   

13.
Mouse pre-implantation development appears to be under the control of paracrine and autocrine growth factors. The epithelium of the oviduct and the uterus together, with the population of macrophages and lymphocytes present in the reproductive tract from the onset of pregnancy, are thought to be the major sources of paracrine growth factors targeted to the developing embryos. Some of the growth factors are synthesized by both uterine epithelial cells and activated lympho-hematopoietic cells, suggesting a partial overlap of the regulatory signals used by the reproductive and lympho-hematopoietic systems. Such growth factors may be the long sought-after mediators of the synchrony between the pre-implantation embryo and the sex-steroid hormone-induced changes in the uterus.  相似文献   

14.
It is known that some kinase inhibitors are sensitive to the phosphorylation state of the kinase, and therefore those compounds can discriminate between a phosphorylated and unphosphorylated protein. In this study, we prepared two colony stimulating factor-1 receptor (CSF-1R) tyrosine kinase proteins: one highly phosphorylated by autophosphorylation and the other dephosphorylated by phosphatase treatment. These kinases were subjected to an activity-based assay to investigate the effect of their phosphorylation state on the potency of several kinase inhibitors. Dasatinib, sorafenib, PD173074 and staurosporine showed similar inhibition against different phosphorylation states of CSF-1R, but pazopanib, sunitinib, GW2580 and imatinib showed more potent inhibition against dephosphorylated CSF-1R. Binding analysis of the inhibitors to the two different phosphorylation forms of CSF-1R, using surface plasmon resonance spectrometry, revealed that staurosporine bound to both forms with similar affinity, but sunitinib bound to the dephosphorylated form with higher affinity. Thus, these observations suggest that sunitinib binds preferentially to the inactive form, preventing the activation of CSF-1R. Screening against different activation states of kinases should be an important approach for prioritizing compounds and should facilitate inhibitor design.  相似文献   

15.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

16.
17.
An approximately 64-kDa cytoplasmic protein is rapidly phosphorylated in tyrosine in the response of macrophages to colony stimulating factor-1. To identify this protein, BAC1.2F5 macrophages were incubated with or without colony stimulating factor-1, the phosphotyrosine-containing portion of their cytosolic fractions subjected to size exclusion chromatography, and the 45-70-kDa fraction further fractionated by reverse phase high pressure liquid chromatography (RP-HPLC). Tryptic peptides of pooled RP-HPLC fractions from stimulated cells (containing the approximately 64-kDa protein and an approximately 54-kDa protein) and from unstimulated cells (containing the approximately 54-kDa protein alone), were sequenced directly. All seven readable sequences of 8 sequenceable peptides present uniquely in the stimulated fraction were present in the sequence of the src homology 2 domain-containing protein tyrosine phosphatase-1C (PTP-1C). The identity of the approximately 64-kDa protein was confirmed by Western blotting with an antibody raised to a PTP-1C peptide. The rapid, growth factor-induced tyrosine phosphorylation of PTP-1C suggests that it may be involved in very early events in growth factor signal transduction.  相似文献   

18.
In humans mutations in DKC1, cause the rare bone marrow failure syndrome dyskeratosis congenita. We have used gene targeting to produce mouse ES cells with Dkc1 mutations that cause DC when in humans. The mutation A353V, the most common human mutation, causes typical DC to very severe DC in humans. Male chimeric mice carrying this mutation do not pass the mutated allele to their offspring. The mutation G402E accounts for a single typical case of DC in a human family. The allele carrying this mutation was transmitted to the offspring with high efficiency. Expression of RNA and protein was reduced compared to wild type animals, but no abnormalities of growth and development or in blood values were found in mutant mice. Thus Dkc1 mutations have variable expression inmice, as in humans. genesis 47:366–373, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The receptor for the macrophage colony stimulating factor-1 (CSF-1R) is a transmembrane glycoprotein with intrinsic tyrosine kinase activity. CSF-1 stimulation promotes the growth of cells of the macrophage lineage and of fibroblasts engineered to express CSF-1R. We show that CSF-1 stimulation resulted in activation of three Src family kinases, Src, Fyn and Yes. Concomitant with their activation, all three Src family kinases were found to associate with the ligand-activated CSF-1 receptor. These interactions were also demonstrated in SF9 insect cells co-infected with viruses encoding the CSF-1 receptor and Fyn, and the isolated SH2 domain of Fyn was capable of binding the CSF-1R in vitro. Analysis of mutant CSF-1Rs revealed that the 'kinase insert' (KI) domain of CSF-1R was not required for interactions with Src family kinases, but that mutation of one of the receptor autophosphorylation sites, Tyr809, reduced both their binding and enzymatic activation. Because fibroblasts expressing this receptor mutant are unable to form colonies in semi-solid medium or to grow in chemically defined medium in the presence of CSF-1, the Src family kinases may play a physiological role in the mitogenic response to CSF-1.  相似文献   

20.
Mouse NIH 3T3 fibroblasts transfected with human colony stimulating factor-1 receptor produced diacylglycerol in response to CSF1 and this correlated with elevated phosphatidylcholine hydrolyzing activity measured in an in vitro assay. Treatment of cells with the isoflavone derivative genistein attenuated PC hydrolysis in vitro suggesting a role for CSF1R tyrosine kinase activity. A CSF1R mutant lacking 67 amino acids of the kinase insert domain, which may affect the association of receptor with certain substrates, stimulated PC hydrolysis in response to CSF1. Coupling to PC hydrolysis is likely a general property of CSF1R and the kinase insert domain is dispensable for this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号