首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mast cells are tissue-resident immune cells that are capable of signaling many different cell types in vascularized tissue including epithelia and smooth muscle. We have developed an in vitro coculture system in which secretion of serotonin by a mucosal mast cell line (RBL-2H3) can be studied at a single cell level by measuring Ca2+ transients in fura-2 loaded mast cells and serotonin-sensitive A7r5 smooth muscle cells using fluorescence video microscopy and digital image processing. A7r5 cells elevate intracellular Ca2+ via 5HT2 receptors in response to bath-applied serotonin with an ED50 for serotonin of 550nM. Crosslinking lgE receptors with antigen caused Ca2+ transients in the mucosal mast cells. Ca2+ responses in the smooth muscle were detected ≈? 30–240 sec after the initiation of the mast cell Ca2+ responses. Smooth muscle Ca2+ responses were dependent on preloading mast cells with serotonin and were blocked by the 5HT2 antagonist ketanserin. The timing and magnitude of the smooth muscle responses indicated that secretion from mast cells can lead to local concentrations of serotonin in the range of 300 nM within 1 min of antigen stimulation. This coculture technique has allowed the first direct demonstration of serotonin-mediated signaling between immune cells and vascular elements. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Activation of protein kinase C has been shown to reduce the Ca2+ responses of a variety of cell types. In most cases, the reduction is due to inhibition of Ca2+ influx, but acceleration of Ca2+ efflux and inhibition of Ca2+ store depletion by protein kinase C activation have also been described. For adherent RBL-2H3 mucosal mast cells, results from whole-cell patch clamp experiments suggest that protein kinase C activation reduces Ca2+ influx, while experiments with intact, fura-2-loaded cells suggest that Ca2+ influx is not affected. Here we present single-cell data from Ca2+ imaging experiments with adherent RBL-2H3 cells, showing that antigen-stimulated Ca2+ responses of phorbol 12-myristate 13-acetate (PMA)-treated cells are more transient than those of control cells. PMA also reduced the response to antigen in the absence of extracellular Ca2+, indicating that depletion of intracellular Ca2+ stores is inhibited. If PMA was added after stores had been depleted by thapsigargin, a small decrease in [Ca2+]i was observed, consistent with a slight inhibition of Ca2+ influx. However, the major effect of PMA on the antigen-stimulated Ca2+ response is to inhibit depletion of intracellular Ca2+ stores. We also show that inhibition of protein kinase C did not enhance the Ca2+ response to antigen, suggesting that inhibition of the Ca2+ response by activation of protein kinase C does not contribute to the physiological response to antigen. J. Cell. Physiol. 181:113–123, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Mast cells play a primary role in allergic diseases. During an allergic reaction, mast cell activation is initiated by cross-linking IgE-FcεRI complex by multivalent antigen resulting in degranulation. Additionally, G protein-coupled receptors also induce degranulation upon activation. However, the spatio-temporal relationship between Ca2+ mobilization and mast cell degranulation is not well understood. We investigated the relationship between oscillations in Ca2+ level and mast cell degranulation upon stimulation in rat RBL-2H3 cells. Nile red and Fluo-4 were used as probes for monitoring histamine and intracellular Ca2+ levels, respectively. Histamine release and Ca2+ oscillations in real-time were monitored using total internal reflection fluorescence microscopy (TIRFM). Mast cell degranulation followed immediately after FcεRI and GPCR-mediated Ca2+ increase. FcεRI-induced Ca2+ increase was higher and more sustained than that induced by GPCRs. However, no significant difference in mast cell degranulation rates was observed. Although intracellular Ca2+ release was both necessary and sufficient for mast cell degranulation, extracellular Ca2+ influx enhanced the process. Furthermore, cytosolic Ca2+ levels and mast cell degranulation were significantly decreased by downregulation of store-operated Ca2+ entry (SOCE) via Orai1 knockdown, 2-aminoethyl diphenylborinate (2-APB) or tubastatin A (TSA) treatment. Collectively, this study has demonstrated the role of Ca2+ signaling in regulating histamine degranulation.  相似文献   

4.
The activation of mast cells by immunoglobulin E-mediated stimuli is considered as a central event in allergic responses. In this regard, chitosan oligosaccharides (COS) of two different molecular weight ranges (1–3 kDa and 3–5 kDa) were investigated for their capabilities against the activation of RBL-2H3 mast cell sensitized with dinitrophenyl-specific immunoglobulin E antibody and stimulated by antigen dinitrophenyl-bovine serum albumin. It was found that COS significantly inhibited RBL-2H3 cell degranulation via attenuating the releases of histamine and β-hexosaminidase. Moreover, the inhibitory activity of COS was accompanied by a reduction in intracellular Ca2+ elevation. Notably, the expression of immunoglobulin Fc epsilon receptor I (Fc?RI) in RBL-2H3 cells was down-regulated by COS treatment in a dose-dependent manner. The suppressive effect of COS on RBL-2H3 cell activation suggested that COS may be potential candidates of novel inhibitors against allergic reactions.  相似文献   

5.
The increase in intracellular Ca2+ through the Ca2+ channel is an indispensable step for the secretion of inflammatory mediators by mast cells. It was recently reported that Orai-1 is responsible for the Ca2+ influx that is activated by depletion of stored Ca2+. There are three isoforms of Orai: Orai-1, Orai-2, and Orai-3; however, isoforms other than Orai-1 are poorly understood. We found that Orai-2 is expressed and localized on secretory granules in RBL-2H3. Ca2+ release from Ca2+ store, induced by antigen stimulation, was significantly attenuated by knockdown of Orai-2, while that induced by thapsigargin was not affected. Furthermore, exocytotic release induced by antigen stimulation was inhibited in knockdown cells. This observation suggests a new role of Orai isoforms in secretory cells.  相似文献   

6.
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500–5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5–50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation. mast cell; immunoglobulin E; cytochalasin D; Y-27632; wortmannin  相似文献   

7.
Ionizing radiation has different biological effects according to dose and dose rate. In particular, the biological effect of low-dose radiation is unclear. Low-dose whole-body gamma irradiation activates immune responses in several ways. However, the effects and mechanism of low-dose radiation on allergic responses remain poorly understood. Previously, we reported that low-dose ionizing radiation inhibits mediator release in IgE-mediated RBL-2H3 mast cell activation. In this study, to have any physiological relevance, we investigated whether low-dose radiation inhibits allergic responses in activated human mast cells (HMC-1(5C6) and LAD2 cells), mouse models of passive cutaneous anaphylaxis and the late-phase cutaneous response. High-dose radiation induced cell death, but low-dose ionizing radiation of <0.5 Gy did not induce mast cell death. Low-dose ionizing radiation that did not induce cell death significantly suppressed mediator release from human mast cells (HMC-1(5C6) and LAD2 cells) that were activated by antigen-antibody reaction. To determine the inhibitory mechanism of mediator released by low-dose ionizing radiation, we examined the phosphorylation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, and protein kinase C, as well as the intracellular free Ca2+ concentration ([Ca2+]i). The phosphorylation of signaling molecules and [Ca2+]i following stimulation of FcεRI receptors was inhibited by low dose ionizing radiation. In agreement with its in vitro effect, ionizing radiation also significantly inhibited inflammatory cells infiltration, cytokine mRNA expression (TNF-α, IL-4, IL-13), and symptoms of passive cutaneous anaphylaxis reaction and the late-phase cutaneous response in anti-dinitrophenyl IgE-sensitized mice. These results indicate that ionizing radiation inhibits both mast cell-mediated immediate- and delayed-type allergic reactions in vivo and in vitro.  相似文献   

8.
A uniform extracellular stimulus triggers cell-specific patterns of Ca2+ signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3) concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca2+ oscillations in terms of the time constant of Ca2+ spike amplitude decay and the Ca2+ oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca2+ signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca2+ signals. RT-PCR and western blot analyses showed that phospholipase C (PLC)-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca2+ oscillations, such as the time constant of the temporal changes in the Ca2+ spike amplitude and the Ca2+ oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca2+ release, can cause cell-to-cell variability in the patterns of Ca2+ signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca2+ signals evoked by G protein-coupled receptor stimulation.  相似文献   

9.
10.
Cyclopiazonic acid has been reported to inhibit the Ca2+-ATPase of intracellular calcium stores in some nonexcitable cell types, such as myeloid cells and lymphocytes. The present study examines the effects of cyclopizonic acid on rat basophilic leukemia (RBL) cells, a mucosal mast cell line. Addition of cyclopiazonic acid to fura-2-loaded RBL cells evoked a biphasic increase in free ionized intracellular calcium. Release of stored calcium accounted for the first phase of this response. The second phase was determined to be calcium entering through an influx pathway activated by cyclopiazonic acid. The influx pathway was selective for calcium, But was somewhat permeable to manganese. However, in a Ca2+-free solution containing EGTA, sodium ions permeated freely. This influx pathway appears to be identical to that which is activated by antigen, the physiological stimulus to the cells. Cyclopiazonic acid also induced secretion when combined with the phorbol ester 12-0-tetradecanoyl phorbol 13-acetate, which activates protein kinae C. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Abstract Interaction between a T cell and an antigen‐presenting cell leads to the rapid formation of an immunological synapse allowing antigen detection by the T cell and the development of an immune response. Antigen detection triggers various cellular responses including a modest but sustained T cell Ca2+ increase. In this review are discussed a series of related questions. What are the various molecular events by which a T cell Ca2+ response can be triggered in the immunological synapse by a very small amount of antigen ? How is Ca2+ released from intracellular stores and how can these stores remain empty for hours ? Through which channels does Ca2+ influx takes place, and how is Ca2+ influx coupled to Ca2+ release from intracellular stores ? What are the main immediate and indirect cellular targets of the Ca2+ increase ?  相似文献   

12.
Using1999 Harcourt Publishers Ltdthe ratiometric Ca2+indicator, indo-1, the antigen-induced increase in intracellular Ca2+concentration ([Ca2+]i) was measured in individual RBL–2H3 cells which had been passively sensitized with monoclonal antibody to the dintrophenyl (DNP) haptenic group. Antigenic stimulation using DNP-human serum albumin conjugate (DNP-HSA) induced concentration-dependent asynchronous Ca2+oscillations, or irregular spikes. To achieve a quantitative comparison of the effects of different concentrations of antigen on changes in [Ca2+]i, the area under the curve (AUC) of Ca2+oscillations in each cell was calculated.The dose–response curve of the calculated AUC is consistent with the bell-shaped dose–response curve for antigen-induced mediator release, depolarization and86Rb+-efflux. Ca2+oscillations induced by antigenic stimulation were abolished by removal of external Ca2+and the subsequent reintroduction of external Ca2+caused their resumption.To investigate the role of Ca2+oscillations in the secretory response, changes in [Ca2+]iinduced by concanavalin A (Con-A), A23187, thapsigargin and NECA were also monitored. Con-A mimicked the response induced by antigen, whilst A23187 and thapsigargin induced a large transient non-oscillatory response. NECA, an adenosine receptor agonist, induced only a small transient rise in [Ca2+]iwithout oscillatory behaviour. Since all these stimuli accept NECA-induced degranulation in these cells, it is suggested that, although Ca2+oscillations are not essential for the initiation of secretion, they probably underlie the in-vivo physiological response of mast cells and basophils to an antigenic challenge. They also seem to enhance the efficacy of the Ca2+signal.  相似文献   

13.
Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca2+]c). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the ‘[Ca2+]c signature’ in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the ‘receptor cells’ to the ‘effector cells’. Here, a novel aspect is highlighted to explain the variety of [Ca2+] kinetics seen by integrating methods of [Ca2+]c recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca2+]c-increases percolate through the organism and thereby deliver a broad variety of ‘signatures’. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular ‘[Ca2+]c signatures’ recorded by optical techniques which integrate over a big number of cells or even whole plants.Key words: cellular automata, cell-to-cell communication, cytoplasmic calcium, modelling, percolation, signature  相似文献   

14.
All three members of the Orai family of cation channels–Orai1, Orai2 and Orai3–are integral membrane proteins that can form store-operated Ca2+ channels resembling endogenous calcium release-activated channels (CRAC) in many aspects. Loss of function studies in human and murine models revealed many functions of Orai1 proteins not only for Ca2+ homeostasis, but also for cellular and systemic functions in many cell types. By contrast, the knowledge regarding the contribution of Orai2 and Orai3 proteins in these processes is sparse. In this study, we report the generation of mouse models with targeted inactivation of the Orai2 gene to study Orai2 function in peritoneal mast cells (PMC), a classical cell model for CRAC channels and Ca2+-dependent exocytosis of inflammatory mediators. We show that the Ca2+ rise triggered by agonists acting on high-affinity Fc receptors for IgE or on MAS-related G protein-coupled receptors is significantly increased in Orai2-deficient mast cells. Ca2+ entry triggered by depletion of intracellular stores (SOCE) is also increased in Orai2−/− PMCs at high (2 mM) extracellular Ca2+ concentration, whereas SOCE is largely reduced upon re-addtion of lower (0.1 mM) Ca2+ concentration. Likewise, the density of CRAC currents, Ca2+-dependent mast cell degranulation, and mast cell-mediated anaphylaxis are intensified in Orai2-deficient mice. These results show that the presence of Orai2 proteins limits receptor-evoked Ca2+ transients, store-operated Ca2+ entry (SOCE) as well as degranulation of murine peritoneal mast cells but also raise the idea that Orai2 proteins contribute to Ca2+ entry in connective tissue type mast cells in discrete operation modes depending on the availability of calcium ions in the extracellular space.  相似文献   

15.
We have previously shown that Janus kinase 3, a member of the family of non-receptor protein tyrosine kinases, plays a critical role in the regulation of FcεRI-mediated mast cell responses. In the current study, we investigated the role of another JAK family member, JAK2, in these responses. Our results show that the treatment of IgE-sensitized mouse mast cells with an inhibitor of JAK2 (AG490) blocked the release of leukotriene C4 in a dose-dependent fashion after antigen challenge. However, prostaglandin PG D2 production and degranulation were not affected under identical experimental conditions. Transfection of RBL-2H3 mast cells with JAK-2 specific small interfering RNA resulted in a 50% reduction of LTC4 release in response to FcεRI crosslinking, but did not inhibit mast cell degranulation or calcium ionophore-induced LTC4 release, indicating involvement of JAK2 in IgE receptor-mediated leukotriene release. Taken together, these data suggest that JAK2 is a critical regulator of IgE/antigen-induced production of LTC4 in mast cells.  相似文献   

16.
An adenosine triphosphatase (ATP) activated by Ca2+ or Mg2+ is shown morphologically on the outer surface of non-secreting and secreting rat peritoneal mast cells. ATPase having the same properties is also seen on the external surface of the other peritoneal cells, i.e. macrophages, mononuclear cells and lymphocytes. When histamine release from the mast cells was induced by exposing them to antigen (anaphylactic reaction) or compound 48/80, ATPase activated by Ca2+ or Mg2+ could in addition be demonstrated in the granule membranes. Granule membrane ATPase is also shown in non-secreting mast cells after freezing and thawing. ATPase on the outer surface of the plasma membrane is seen in the secreting mast cells as in the non-secreting cells except in the areas where the plasma membrane fuses with the granule membrane. The role of ATPase in granule secretion process has been discussed.  相似文献   

17.
Recent advances in fluorescence localization microscopy have made it possible to image chemically fixed and living cells at 20 nm lateral resolution. We apply this methodology to simultaneously record receptor organization and dynamics on the ventral surface of live RBL-2H3 mast cells undergoing antigen-mediated signaling. Cross-linking of IgE bound to FcεRI by multivalent antigen initiates mast cell activation, which leads to inflammatory responses physiologically. We quantify receptor organization and dynamics as cells are stimulated at room temperature (22°C). Within 2 min of antigen addition, receptor diffusion coefficients decrease by an order of magnitude, and single-particle trajectories are confined. Within 5 min of antigen addition, receptors organize into clusters containing ∼100 receptors with average radii of ∼70 nm. By comparing simultaneous measurements of clustering and mobility, we determine that there are two distinct stages of receptor clustering. In the first stage, which precedes stimulated Ca2+ mobilization, receptors slow dramatically but are not tightly clustered. In the second stage, receptors are tightly packed and confined. We find that stimulation-dependent changes in both receptor clustering and mobility can be reversed by displacing multivalent antigen with monovalent ligands, and that these changes can be modulated through enrichment or reduction in cellular cholesterol levels.  相似文献   

18.
The small chemical vacuolin-1 induces rapid formation of large vacuoles in various cell types. In epithelial cells, vacuolin-1 has been shown to inhibit Ca2+ ionophore-induced exocytosis depending on experimental conditions used but had no effect on repair of damaged membranes. However, it is not known whether vacuolin-1 could inhibit exocytosis induced by immunoreceptor triggering in professional secretory cells and whether there is any correlation between effect of vacuolin-1 on exocytosis and membrane repair in such cells. Here we show that in rat basophilic leukemia (RBL-2H3) cells activated by the high-affinity IgE receptor (FcεRI) triggering vacuolin-1 enhanced exocytosis. Under identical conditions of activation, vacuolin-1 inhibited exocytosis in mouse bone marrow-derived mast cells (BMMCs). This inhibition was not reflected by decreased phosphorylation of the FcεRI α and β subunits, linker for activation of T cells, non-T cell activation linker, Akt and MAP kinase Erk, and uptake of extracellular Ca2+, indicating that early activation events are not affected. In both cell types vacuolin-1 led to formation of numerous vacuoles, a process which was inhibited by bafilomycin A1, an inhibitor of vacuolar H+-ATPase. Thapsigargin- or Ca2+ ionophore A23187-induced exocytosis also showed different sensitivity to the inhibitory effect of vacuolin-1. Pretreatment of the cells with vacuolin-1 followed by permeabilization with bacterial toxin streptolysin O enhanced Ca2+-dependent repair of plasma membrane lesions in RBL-2H3 cells but inhibited it in BMMCs. Our data indicate that lysosomal exocytosis exhibits different sensitivity to vacuolin-1 depending on the cell type analyzed and mode of activation. Furthermore, our results support the concept that lysosomal exocytosis is involved in the repair of injured plasma membranes.  相似文献   

19.
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.  相似文献   

20.
We have characterized a Ca2+ current activated by depletion of intracellular Ca2+ stores (capacitative Ca2+ entry current) as a first step to investigate the mechanisms underlying communication between the intracellular Ca2+ stores and the plasma membrane Ca2+ permeability. Whole cell currents in response to voltage ramps from −125 to +60 mV from a holding potential of −40 mV were recorded in rat basophilic leukemia cells (RBL-1 cells) in solutions designed to optimize detection of a Ca2+ current. An inwardly rectifying current could be activated upon dialysis of the cell interior with pipette solutions devoid of Ca2+ and containing 20 mm BAPTA, a procedure expected to passively deplete intracellular Ca2+ stores. The current was maximally activated within 2 min, was sensitive to extracellular Ca2+ concentration and was abolished by removal of extracellular Ca2+. The current was markedly reduced in the presence of Ni2+ or La3+. The pathway activated by this protocol was permeant to Ba2+, displaying complex permeability characteristics at negative potentials. A small inward Mn2+ current consistent with a finite permeability of the pathway to Mn2+ was detected. In contrast Ni2+ displayed no detectable current carrying ability. Extracellular Na+ permeated the pathway in the absence of extracellular Ca2+. Under conditions designed to reduce passive depletion of intracellular Ca2+ stores, a Ca2+ current indistinguishable from that described above was activated by addition of ionomycin. This observation is consistent with the activation of the Ca2+ influx pathway occurring as a result of events associated with depletion of intracellular Ca2+ stores. Importantly, application of extracellular Ni2+ in the presence of ionomycin irreversibly inhibited the current. The presence of an inwardly rectifying K+ current in RBL cells could confound studies of the capacitative Ca2+ entry current when recorded using pipette solutions devoid of K+ since this current would be inward over the voltage range used to investigate the capacitative Ca2+ entry current. This study compares an inward rectifying K+ current and the capacitative Ca2+ entry current in RBL cells and highlights some similarities and differences between the two currents. The results demonstrate that caution should be exercised in interpreting recordings made using extracellular solutions containing even modest amounts of K+ when studying the capacitative Ca2+ entry current in RBL cells. Received: 12 September 1995/Revised: 18 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号