首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retinas of teleost fish grow continuously, in part, by neuronal hyperplasia and when lesioned will regenerate. Within the differentiated retina, the growth-associated hyperplasia results in the generation of new rod photoreceptors only, whereas injury-induced neurogenesis results in the regeneration of all retinal cell types. It is believed, however, that both new rod photoreceptors and regenerated neurons originate from the same populations of intrinsic progenitors. Experiments are described here that attempt to identify in the normal retina of goldfish neuronal progenitors intrinsic to the retina, particularly those which have remained cryptic because they divide infrequently. Long-term, systemic exposure to bromodeoxyuridine (BrdU) was used to label these cells. Five populations of proliferative cells were labeled: microglia, which are briefly described but not studied further; retinal progenitors in the circumferential germinal zone (CGZ); and rod precursors in the outer nuclear layer (ONL), both of which have been well characterized previously; and two populations of slowly-dividing cells in the inner nuclear layer (INL). The majority of these cells have a fusiform morphology, whereas the remaining ones are spherical. Longitudinal BrdU labeling suggests that the fusiform cells migrate to the ONL to replenish the pool of rod precursors. A subset of the spherical cells express pax6, although none are stained with markers of differentiated amacrine or bipolar cells. It is hypothesized that these rare, pax6-expressing cells are retinal stem cells, which give rise to the pax6-negative fusiform cells. Based on these data, two models are proposed: the first describes the lineage of rod photoreceptors in goldfish; the second is a consensus model of neurogenesis in the retinas of all teleosts.  相似文献   

2.
3.
Recent studies of optic nerve regeneration in goldfish have indicated that the optic tectum plays an important role in modulating the induction of nicotinic acetylcholine receptor (nAChR) gene expression in regenerating retinal ganglion cells (Hieber, Agranoff, and Goldman, 1992, J. Neurochem. 58:1009–1015). These observations suggest that induction of these genes is regulated by brain target regions. The appearance of nAChR mRNA in the developing rat retina coincides with a time when ganglion cells are sending axons to their brain targets (Hoover and Goldman, 1992, Exp. Eye Res. 54:561–571). Might a mechanism similar to that seen during goldfish optic nerve regenerationalso mediate induction of nAChR gene expression during development of the mammalian retina? This possibility was tested by either transplanting embryonic rat retina to different brain regions, or explanting it to organ culture and assaying for nAChR gene expression. These studies showed that induction of the nAChR genes in developing rat retina is independent of the environment in which the retina develops. These results indicate that either the retinal microenvironment or a signal intrinsic to the retinal ganglion cell is responsible for this induction. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.  相似文献   

5.
We studied tissue-specific expression of homeobox genes Pax6, Prox1, and Six3 during regeneration of the retina and lens. In the native retina, mRNA of Pax6, Prox1, and Six3 was predominantly localized in ganglion cells and in the inner nuclear layer of the retina. Active Pax6, Prox1, and Six3 expression was detected at early stages of regeneration in all proliferating neuroblasts forming the retinal primordium. Low levels of Pax6, Prox1, and Six3 mRNA were revealed in depigmented cells of the pigment epithelium as compared to the proliferating neuroblasts. At the intermediate stage of retinal regeneration, the distribution of Pax6, Prox1, and Six3 mRNA was diffuse and even all over the primordium. During differentiation of the cellular layers in the course of retinal regeneration, Pax6, Prox1, and Six3 mRNA was predominantly localized in ganglion cells and in the inner part of the inner nuclear layer, which was similar to the native retina. An increased expression was revealed in the peripheral regenerated retina where multipotent cells were localized. The dual role of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures has been revealed; these genes controlled cell proliferation and subsequent differentiation of ganglion, amacrine, and horizontal cells. High hybridization signal of all studied genes was revealed in actively proliferating epithelial cells of the native and regenerating lens, while the corneal epithelium demonstrated a lower signal. Pax6 and Prox1 expression was also revealed in single choroid cells of the regenerating eye.  相似文献   

6.
7.
Molecular-genetic mechanisms of regeneration of adult newt (Pleurodeles waltl) retina were studied. For the first time, a comparative analysis of the expression of regulatory genes Pax6, Otx2, and Six3 and FGF2 genes encoding signal molecules was performed in the normal retinal pigment epithelium (RPE) and retina and at successive stages of retina regeneration. Cell differentiation types were determined using genetic markers of cell differentiation in the RPE (RPE65) and the retina (βII-tubulin and Rho). Activation of the expression of neurospecific genes Pax6 and Six3 and the growth factor gene FGF2 and suppression of activation of the regulatory gene Otx2 and the RPE65 were observed at the stage of multipotent neuroblast formation in the regenerating retina. The expression of genes Pax6, Six3, and Fgf2 was retained at a later stage of retina regeneration at which the expression of retinal differentiation markers, the genes encoding β II-tubulin (βII-tubulin) and rhodopsin (Rho), was also detected. We assume that the above regulatory genes are multifunctional and control not only transdifferentiation of RPE cells (the key stage of retina regeneration) but also differentiation of regenerating retina cells. The results of this study, demonstrating coexpression of Pax6, Six3, Fgf2, βII-tubulin, and Rho genes, provide indirect evidence for the interaction of regulatory and specific genes during retina regeneration.  相似文献   

8.
9.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as α-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, α-internexin and gefiltin. α-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 811–824, 1997  相似文献   

10.
11.
12.
The neural retina of adult goldfish can regenerate from an intrinsic source of proliferative neuronal progenitor cells, but it is not known whether the retina can regenerate by transdifferentiation of the retinal pigmented epithelium (RPE), a phenomenon demonstrated in adult newts. In this study, we asked whether following surgical removal of the neural retina in adult goldfish the RPE was capable of autonomously transdifferentiating and generating new neural retina. The retina was prelabeled by injecting the fluorescent dye Fluoro-Gold (FG) into the eye prior to surgical removal; this procedure ensured that residual retina was labeled with FG and could therefore be distinguished from unlabeled, regenerated retina. To examine the time course of retinal regeneration, and to identify regenerated retinal neurons, the thymidine analogue bromodeoxyuridine was injected intraocularly, and retinas were examined up to 2 months later. We found that the RPE did not transdifferentiate; instead, retinas regenerated only when pieces of residual neural retina were left intact. Under these circumstances, newly regenerated cells derived from proliferating cells intrinsic to the residual neural retina. When retinas were completely removed, as was evident from a lack of FG labeling, there was no retinal regeneration. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
We have studied regeneration of the retina in the goldfish as a model of regenerative neurogenesis in the central nervous system. Using a transsclearal surgical approach, we excised small patches of retina that were replaced over several weeks by regeneration. Lesioned retinas from three groups of animals were studied to characterize, respectively, the qualitative changes of the retina and surrounding tissues during regeneration, the concomitant cellular proliferation, and the quantitative relationship between regenerated and intact retina. The qualitative and quantitative analyses were done on retinas prepared using standard methods for light microscopy. The planimetric density of regenerated and intact retinal neurons was computed in a group of animals in which the normal planimetric density ranged from high to low. Cell proliferation was investigated by making intraocular injections of 5-bromo-2′-deoxyuridine (BUdr) at various survival times to label proliferating cells and processing retinal sections for BUdr immunocytochemistry. The qualitative analysis showed that the surgery created a gap in the existing retina that was replaced with new retina over the subsequent weeks. The BUdr-labeling experiments demonstrated that the excised retina was replaced by regeneration of new neurons. Neuroepithiallike cells clustered on the wound margin and migrated centripetally, appositionally adding new retina to the old. The quantitative analysis showed that the planimetric density of the regenerated neurons approximated that of the intact ones.  相似文献   

14.
We have studied regeneration of the retina in the goldfish as a model of regenerative neurogenesis in the central nervous system. Using a transscleral surgical approach, we excised small patches of retina that were replaced over several weeks by regeneration. Lesioned retinas from three groups of animals were studied to characterize, respectively, the qualitative changes of the retina and surrounding tissues during regeneration, the concomitant cellular proliferation, and the quantitative relationship between regenerated and intact retina. The qualitative and quantitative analyses were done on retinas prepared using standard methods for light microscopy. The planimetric density of regenerated and intact retinal neurons was computed in a group of animals in which the normal planimetric density ranged from high to low. Cell proliferation was investigated by making intraocular injections of 5-bromo-2'-deoxyuridine (BUdr) at various survival times to label proliferating cells and processing retinal sections for BUdr immunocytochemistry. The qualitative analysis showed that the surgery created a gap in the existing retina that was replaced with new retina over the subsequent weeks. The BUdr-labeling experiments demonstrated that the excised retina was replaced by regeneration of new neurons. Neuroepithial-like cells clustered on the wound margin and migrated centripetally, appositionally adding new retina to the old. The quantitative analysis showed that the planimetric density of the regenerated neurons approximated that of the intact ones.  相似文献   

15.
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three‐dimensional (3‐D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin‐positive cells nor 3‐D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 739–756, 2014  相似文献   

16.
Many devastating inherited eye diseases result in progressive and irreversible blindness because humans cannot regenerate dying or diseased retinal neurons. In contrast, the adult zebrafish retina possesses the robust ability to spontaneously regenerate any neuronal class that is lost in a variety of different retinal damage models, including retinal puncture, chemical ablation, concentrated high temperature, and intense light treatment. Our lab extensively characterized regeneration of photoreceptors following constant intense light treatment and inner retinal neurons after intravitreal ouabain injection. In all cases, resident Müller glia re-enter the cell cycle to produce neuronal progenitors, which continue to proliferate and migrate to the proper retinal layer, where they differentiate into the deficient neurons. We characterized five different stages during regeneration of the light-damaged retina that were highlighted by specific cellular responses. We identified several differentially expressed genes at each stage of retinal regeneration by mRNA microarray analysis. Many of these genes are also critical for ocular development. To test the role of each candidate gene/protein during retinal regeneration, we needed to develop a method to conditionally limit the expression of a candidate protein only at times during regeneration of the adult retina. Morpholino oligos are widely used to study loss of function of specific proteins during the development of zebrafish, Xenopus, chick, mouse, and tumors in human xenografts. These modified oligos basepair with complementary RNA sequence to either block the splicing or translation of the target RNA. Morpholinos are stable in the cell and can eliminate or "knockdown" protein expression for three to five days. Here, we describe a method to efficiently knockdown target protein expression in the adult zebrafish retina. This method employs lissamine-tagged antisense morpholinos that are injected into the vitreous of the adult zebrafish eye. Using electrode forceps, the morpholino is then electroporated into all the cell types of the dorsal and central retina. Lissamine provides the charge on the morpholino for electroporation and can be visualized to assess the presence of the morpholino in the retinal cells. Conditional knockdown in the retina can be used to examine the role of specific proteins at different times during regeneration. Additionally, this approach can be used to study the role of specific proteins in the undamaged retina, in such processes as visual transduction and visual processing in second order neurons.  相似文献   

17.
Pax-6 expression during retinal regeneration in the adult newt   总被引:4,自引:0,他引:4  
The present study examined the expression of Pax-6 during retinal regeneration in adult newts using in situ hybridization. In a normal retina, Pax-6 is expressed in the ciliary marginal zone, the inner part of the inner nuclear layer, and the ganglion cell layer. After surgical removal of the neural retina, retinal pigment epithelial cells proliferate into retinal precursor cells and regenerate a fully functional retina. At the beginning of retinal regeneration, Pax-6 was expressed in all retinal precursor cells. As regeneration proceeded, differentiating cells appeared at the scleral and vitreal margins of the regenerating retina, which had no distinct plexiform layers. In this stage, the expression of Pax-6 was localized in a strip of cells along the vitreal margin of the regenerating retina. In the late stage of regeneration, when the layer structure was completed, the expression pattern of Pax-6 became similar to that of a normal retina. It was found that Pax-6 is expressed in the retinal precursor cells in the early regenerating retina and that the expression pattern of Pax-6 changed as cell differentiation proceeded during retinal regeneration.  相似文献   

18.
We have isolated full-length cDNAs of chick Chx10 and Chx10-1, two members of the paired type homeobox/CVC gene family. A comparison of sequences suggests that Chx10 is closely related to Alx/Vsx-2 and Vsx-2 of zebrafish and goldfish, respectively; while Chx10-1 is closely related to Vsx-1 of zebrafish and goldfish. Chx10 and Chx10-1 are expressed in the early retinal neuroepithelium, but not in the pigment epithelium and lens. The expression of Chx10 is present in most retinal neuroblasts, while Chx10-1 exhibits a novel pattern along the nasotemporal border. In the differentiating retina, both Chx10 and Chx10-1 are restricted to bipolar cells and are maintained at a low level in bipolar cells of the mature retina.  相似文献   

19.
20.
The α1- and α2-tubulin encoding genes were cloned from a goldfish genomic DNA library. α1- and α2-tubulin RNA expression was examined in developing and adult retinas. These studies demonstrated increased α1-tubulin RNA in presumptive ganglion cells that grow axons early in retinal development and in adult retinal ganglion cells whose optic axons had been damaged. The α2-tubulin RNA was undetectable in developing retina and constitutively expressed in adult retinal ganglion cells regardless of optic nerve crush. To determine if these changes in α1-tubulin RNA reflected changes in α1-tubulin promoter activity, we introduced into zebrafish embryos and adult goldfish retinal explants expression vectors harboring the α1-tubulin gene's promoter. These studies showed that the α1-tubulin promoter confers a developmentally regulated, neuron-restricted pattern of reporter gene expression in vivo and its activity is increased in adult retinal neurons induced to regenerate their axons. Promoter deletions defined regions of α1-tubulin DNA necessary for this pattern of expression. These results suggest that DNA sequences necessary for α1-tubulin gene induction during central nervous system development and regeneration are contained within the α1-tubulin gene's 5′-flanking DNA and that this promoter will be useful for identifying these elements and their DNA binding proteins. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 429–440, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号