首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 mum) and large neurons (soma diameter >/=30 mum), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.  相似文献   

2.
The neuronal survival promoting ability of brain derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF), individually and in combination, was evaluated in dissociated cell cultures of postnatal day 5 (P5) rat acoustic ganglia. The neuritogenic promoting effect of these same neurotrophic factors was examined in organotypic explants of P5 rat acoustic ganglia. The results showed that BDNF was maximally effective at a concentration of 10 ng/mL in promoting both survival and neuritogenesis of these postnatal auditory neurons in vitro. CNTF was maximally effective at a concentration of 0.01 ng/mL at promoting both survival and neuritogenesis in the acoustic ganglion cultures. BDNF had its strongest effect on neuronal survival while CNTF was most effective in stimulating neurite outgrowth. These two neurotrophic factors, when added together at their respective maximally effective concentrations, behave in an additive manner for promoting both survival and neuritic outgrowth by the auditory neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR‐1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino‐terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR‐1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR‐1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target‐derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombin‐induced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line–derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle‐derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by α‐thrombin. Yet, non–muscle‐derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin‐induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin‐induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin‐induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin‐induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 571–580, 1999  相似文献   

4.

Objectives

The functionality of cochlear implants (CI) depends, among others, on the number and excitability of surviving spiral ganglion neurons (SGN). The spatial separation between the SGN, located in the bony axis of the inner ear, and the CI, which is inserted in the scala tympani, results in suboptimal performance of CI patients and may be decreased by attracting the SGN neurites towards the electrode contacts. Neurotrophic factors (NTFs) can support neuronal survival and neurite outgrowth.

Methods

Since brain-derived neurotrophic factor (BDNF) is well known for its neuroprotective effect and ciliary neurotrophic factor (CNTF) increases neurite outgrowth, we evaluated if the combination of BDNF and CNTF leads to an enhanced neuronal survival with extended neurite outgrowth. Both NTFs were added in effective high concentrations (BDNF 50ng/ml, CNTF 100ng/ml), alone and in combination, to cultured dissociated SGN of neonatal rats for 48 hours.

Results

The neuronal survival and neurite outgrowth were significantly higher in SGN treated with the combination of the two NTFs compared to treatment with each factor alone. Additionally, with respect to the morphology, the combination of BDNF and CNTF leads to a significantly higher number of bipolar neurons and a decreased number of neurons without neurites in culture.

Conclusion

The combination of BDNF and CNTF shows a great potential to increase the neuronal survival and the number of bipolar neurons in vitro and to regenerate retracted nerve fibers.  相似文献   

5.
Little is known about the signal transduction mechanisms involved in the response to neurotrophins and other neurotrophic factors in neurons, beyond the activation of the tyrosine kinase activity of the neurotrophin receptors belonging to the trk family. We have previously shown that the introduction of the oncogene product ras p21 into the cytoplasm of chick embryonic neurons can reproduce the survival and neurite-outgrowth promoting effects of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), and of ciliary neurotrophic factor (CNTF). To assess the potential signal- transducing role of endogenous ras p21, we introduced function-blocking anti-ras antibodies or their Fab fragments into cultured chick embryonic neurons. The BDNF-induced neurite outgrowth in E12 nodose ganglion neurons was reduced to below control levels, and the NGF- induced survival of E9 dorsal root ganglion (DRG) neurons was inhibited in a specific and dose-dependent fashion. Both effects could be reversed by saturating the epitope-binding sites with biologically inactive ras p21 before microinjection. Surprisingly, ras p21 did not promote the survival of NGF-dependent E12 chick sympathetic neurons, and the NGF-induced survival in these cells was not inhibited by the Fab-fragments. The survival effect of CNTF on ras-responsive ciliary neurons could not be blocked by anti-ras Fab fragments. These results indicate an involvement of ras p21 in the signal transduction of neurotrophic factors in sensory, but not sympathetic or ciliary neurons, pointing to the existence of different signaling pathways not only in CNTF-responsive, but also in neurotrophin-responsive neuronal populations.  相似文献   

6.
Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR-1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino-terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR-1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR- 1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target-derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombininduced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle-derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by alpha-thrombin. Yet, non-muscle-derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin-induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin-induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin-induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin-induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively.  相似文献   

7.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   

8.
CNTF (ciliary neurotrophic factor), purified from rabbit sciatic nerves by a relatively simple procedure, is bioactive in tissue culture at low picomolar concentration and appears as a doublet on polyacrylamide gel electrophoresis (PAGE). In these nerves, CNTF accounts for more than one-half of the survival-promoting activity on ciliary neurons. The concentration of CNTF in rabbit sciatic nerves is estimated to be 5 nmol/kg, more than 1000 times higher than would seem to be required to support neurons if the neurotrophic factor were homogeneously distributed. With recombinant DNA technology, rat CNTF has been synthesized in Escherichia coli, purified without denaturating agents, and found to be bioactive at a slightly lower concentration than CNTF extracted from rabbit sciatic nerves. After radioiodination, CNTF retains biological activity but is not specifically internalized and retrogradely transported in motor and sensory axons. In peripheral nerves, ciliary neurotrophic factor differs biologically from nerve growth factor (NGF) by its much higher tissue concentration and apparent lack of internalization by peripheral nerve axons. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Retinal ganglion cell (RGC) survival and neurite outgrowth were investigated in retinal explants from adult rats. Neutrotrophin-4/5 (NT-4/5) caused dose-dependent increases in neurite outgrowth with one-half maximal effects at approximately 0.5 ng/ml and maximal effects at 5 ng/ml. In explants treated for 7 days, the actions of NT-4/5 were similar to those of brain-derived neurotrophic factor (BDNF); with either neurotrophin, nearly twice as many RGCs survived and there was a two- to threefold increase in the number of neurites formed by RGCs. Combinations of saturating concentrations of NT-4/5 and BDNF did not enhance these in vitro effects, implying that both neurotrophins share a common signaling pathway. In contrast, nerve growth factor (NGF), neurotrophin-3 (NT-3), or ciliary nuerotrophic factor (CNTF) appeared to exert minimal influences on RGC survival or neurite outgrowth. 1994 John Wiley & Sons, Inc.  相似文献   

10.
Adrenal chromaffin cells have been characterized by the ability to change the phenotype in response to neurotrophic factor stimulation. The adrenal gland expresses numerous trophic factors endogenously, but there is still a lack of knowledge as to how the adrenal medullary cells respond to these factors. Accordingly, we evaluated nerve fiber outgrowth and cell morphology, and measured catecholamine content in adult rat adrenal medullary tissue transplanted to the anterior chamber of the eye after exposure to neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glial cell line-derived neurotrophic factor (GDNF) compared with the effects after exposure to recombinant human nerve growth factor (rhNGF). The results show that rhNGF was the most potent factor in inducing neurite outgrowth from the grafted chromaffin cells. CNTF was also a powerful inducer of nerve fiber formation, while NT-4/5, GDNF, and bFGF were less potent. NT-3 did not produce neurite outgrowth above that seen in vehicle-treated eyes. Combining two neurotrophins, rhNGF and NT-3, reduced nerve fiber formation. Tyrosine hydroxylase (TH) immunohistochemistry revealed good cell survival in all grafts, and no morphological differences were detected with the different treatments. The adrenaline: noradrenaline: dopamine ratio was approximately 49%: 49%: 2%, independent of treatment, and the catecholamine content was equal irrespective of treatment. In conclusion, all neurotrophic factors used, except for NT-3, promoted neurite outgrowth from adult rat chromaffin transplants. Differences in outgrowth induced by the various trophic factors did not, however, change the catecholamine content in grafts when analyzed together with the graft-derived nerve plexus.  相似文献   

11.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

12.
Compounds isolated from Magnolia officinalis such as magnolol, honokiol and obovatol exhibit several pharmacological effects on CNS including depressant, anxiolytic and anticonvulsant effects, as well as neuroprotective effects against chemical and heat damages. Recently, honokiol was found to have a neurotrophic effect in fetal rat cortical neurons. In the present study, we show that 4-O-methylhonokiol, a novel compound from Magnolia officinalis, promotes neurite outgrowth in a concentration-dependent manner in rat embryonic neuronal cells. In parallel with the neurite outgrowth activity, the expression of neurite outgrowth marker proteins is also increased by treatment with 4-O-methylhonokiol. We also found that 4-O-methylhonokiol promotes the release of NGF and BDNF into cell culture medium. In addition, lower concentration of 4-O-methylhonokiol (1 and 2 μM) further enhanced neurite outgrowth and expression of neurite outgrowth marker proteins in the presence of NGF (50 ng/ml) or BDNF (10 ng/ml). Subsequently, we found that 4-O-methylhonokiol activates ERK in a concentration-dependent manner. However, the neurite outgrowth activity and the NGF and BDNF release induced by 4-O-methylhonokiol are suppressed by an ERK-specific inhibitor. These results suggest that 4-O-methylhonokiol has the ability to induce neurite outgrowth via the increase of neurotrophic factor levels through ERK activation.  相似文献   

13.
This study describes the survival and neurite outgrowth behaviors of cultured adrenal medullary (chromaffin) cells obtained from postnatal rats 1 day (D1) to 100 days (D100) old in response to nerve growth factor (NGF), chick eye ciliary neuronotrophic factor (CNTF), and laminin. In the absence of trophic factors the 4-day survival of cultured chromaffin cells (relative to the number of cells attached at 2 hr) increased from one-third of the cells at D1 to 40% at D8 and 90-100% at D16 and older stages. At saturating concentrations NGF increased cell survival at D8 by 90%, but failed to support all chromaffin cells present at 2 hr. In contrast, CNTF supported the survival of all cells at D8. At D1 NGF and CNTF had only a very small effect on survival during the 4-day culture period, although both factors clearly enhanced the numbers of surviving cells after 8 days. Either NGF or CNTF also elicited neurite outgrowth from rat chromaffin cells, which amounted to approximately 15-20% at D1 and D8 and subsequently decreased to about 5-8% at D30 and virtually zero at D100. At this last age both factors applied together clearly elicited neurites. Such a potentiating effect of NGF and CNTF was also seen at earlier postnatal ages. Laminin did not affect neurite growth at D30 in the absence of trophic factors, as already described for D8 rat chromaffin cells. In the presence of NGF, however, it increased neurite length and branching during a 4-day culture period and even enhanced neurite recruitment at later culture times. These data suggest that rat chromaffin cells undergo age-related changes in their responses to NGF and CNTF and that laminin modulates their neurite outgrowth behaviors in the presence of trophic factors.  相似文献   

14.
The requirement for trophic factors in neurite outgrowth is well established, though their role in synapse formation is yet to be determined. Moreover, the issue of whether the trophic factors mediating neurite outgrowth are also responsible for synapse specification has not yet been resolved. To test whether trophic factors mediating neurite outgrowth and synapse formation between identified neurons are conserved in two molluscan species and whether these developmental processes are differentially regulated by different trophic factors, we used soma-soma and neurite-neurite synapses between identified Lymnaea neurons. We demonstrate here that the trophic factors present in Aplysia hemolymph, although sufficient to induce neurite outgrowth from Lymnaea neurons, do not promote specific synapse formation between excitatory partners. Specifically, the identified presynaptic neuron visceral dorsal 4 (VD4) and postsynaptic neuron left pedal dorsal 1 (LPeD1) were either paired in a soma-soma configuration or plated individually to allow neuritic contacts. Cells were cultured in either Lymnaea brain-conditioned medium (CM) or on poly-L-lysine dishes that were pretreated with Aplysia hemolymph (ApHM), but contained only Lymnaea defined medium (DM; does not promote neurite outgrowth). In ApHM-coated dishes containing DM, Lymnaea neurons exhibited extensive neurite outgrowth, but appropriate excitatory synapses failed to develop between the cells. Instead, inappropriate reciprocal inhibitory synapses formed between VD4 and LPeD1. Similar inappropriate inhibitory synapses were observed in Aplysia hemolymph-pretreated dishes that contained dialyzed Aplysia hemolymph. These inhibitory synapses were novel and inappropriate, because they do not exist in vivo. A receptor tyrosine kinase inhibitor (Lavendustin A) blocked neurite outgrowth induced by both Lymnaea CM and ApHM. However, it did not affect inappropriate inhibitory synapse formation between the neurons. These data demonstrate that neurite outgrowth but not inappropriate inhibitory synapse formation involves receptor tyrosine kinases. Together, our data provide direct evidence that trophic factors required for neurite outgrowth are conserved among two different molluscan species, and that neurite extension and synapse specification between excitatory partners are likely mediated by different trophic factors.  相似文献   

15.
16.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

17.
This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.  相似文献   

18.
Oxidative stress has been implicated in the pathogenesis of a wide variety of neuronal diseases, including ischemic neuronal injury, Alzheimer’s disease, and Parkinson’s disease. Thioredoxin reduces exposed protein disulfides and couples with peroxiredoxin to scavenge reactive oxygen species. Nerve growth factor (NGF) has profound effects on neurons, including promotion of survival and differentiation via multiple signaling pathways. As for the NGF-induced neurite outgrowth, the CREB-cAMP responsive element (CRE) pathway is important to the activation of immediate-early genes such as c-fos. Thioredoxin is upregulated by NGF through ERK and the CREB-CRE pathway in PC12 cells. Thioredoxin is necessary for NGF signaling through CRE leading to c-fos expression and also plays a critical role in the NGF-mediated neurite outgrowth in PC12 cells. Therefore, thioredoxin appears to be a neurotrophic cofactor that augments the effect of NGF on neuronal differentiation and regeneration. NGF acts also as a neuronal survival factor. Previous reports showed that thioredoxin exerts a cytoprotective effect in the nervous system. The cytoprotective effect is mediated by enhancing the action of NGF, via the regulation of antiapoptotic signaling, or through its antioxidative stress activity.  相似文献   

19.
Substrate-bound and soluble factors regulate neurite outgrowth and synapse formation during development, regeneration, and learning and memory. We report that sheath cells from CNS connectives and arterial cells from the anterior aorta of the sea slug, Aplysia californica, enhance neurite outgrowth from co-cultured Aplysia neurons. Sheath and arterial cell cultures contain several cell types, including fibrocytes, myocytes, and amoebocytes. When compared to controls (neurons with defined growth medium alone), the percentage of neurons with growth and the average neurite lengths are significantly enhanced by sheath and arterial cells at 48 h after plating of the neurons; these parameters are comparable to those of neurons cultured in medium containing hemolymph. Our results indicate that sheath cells produce substrate-bound factor(s) and arterial cells produce diffusible factor(s) that promote growth. These growth factors likely promote neuron survival and neurite outgrowth during neural plasticity exhibited in the adult CNS. Electronic Publication  相似文献   

20.
Cyclopentenone prostaglandins (PGs) are known to arrest the cell cycle at the G(1) phase in vitro and to suppress tumor growth in vivo. However, their effects on neurons are unclear. Here, we report that some cyclopentenone PGs function as neurite outgrowth-promoting factors. They promoted neurite outgrowth from PC12 cells and from dorsal root ganglion explants but only in the presence of nerve growth factor (NGF). We refer to these PGs as neurite outgrowth-promoting PGs (NEPPs). Through study of the structure-function relationship of NEPP1-10 and related compounds, we found that the cross-conjugated dienone moiety of NEPPs was essential for promoting neurite outgrowth, and NEPP10 was concluded to be the best candidate for drug development. We also investigated the intracellular mechanism of the promotion by NEPPs and obtained evidence that immunoglobulin heavy chain binding protein/glucose-regulated protein 78 (BiP/GRP78) plays a role in the promotion, based on the following observations: Antisense nucleotides for BiP/GRP78 gene blocked the promotion of neurite outgrowth; BiP/GRP78 protein level increased in response to NEPPs; and overexpression of BiP/GRP78 protein by adenoviral gene transfer promoted the neurite outgrowth by NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号