首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intrinsic tryptophan fluorescence of membranes prepared from the GH3 strain of hormone-producing pituitary cells was monitored by spectrofluorometry. Membranes of GH3 cells have specific receptors which bind thyrotropin-releasing hormone (TRH). When TRH binds to GH3 membranes there is quenching of tryptophan fluorescence. The kinetics of the change in fluorescence of GH3 membranes and of TRH binding are similar. In addition, the concentration of TRH required to produce a half-maximum change in fluorescence is 10 nM, and that required for half-maximum binding of TRH to receptors is 11 nM. Inactive TRH analogs which do not bind to TRH receptors likewise do not alter GH3 membrane fluorescence, and a pituitary cell strain which lacks TRH receptors does not change membrane fluorescence on incubation with TRH. We conclude that the TRH-receptor interaction in GH3 membranes is associated with a change in membrane conformation that is readily measured by differential spectrofluorometry.  相似文献   

2.
The presence of the pertussis toxin (PTX) insensitive GTP-binding proteins (G-proteins) Gq and/or G11 has been demonstrated in three different prolactin (PRL) and growth hormone (GH) producing pituitary adenoma cell lines. Immunoblocking of their coupling to hormone receptors indicates that Gq and/or G11 confer throliberin (TRH) responsive phospholipase C (PL-C) activity in these cells. The contention was substantiated by immunoprecipitation analyses snowing that anti Gq/11-sera coprecipitated PL-C activity. In essence, only Gq/11 (but neither Gi2, Gi3 nor Go) seems to mediate the TRH-sensitive PL-C activity, while Go may be coupled to a basal or constitutive PL-C activity. Immunoblocking studies imply that the B-complex also, to some extent, may stimulate GH3 pituitary cell line PL-C activity. Finally, the steady state levels of Gq/11 mRNA and protein were downregulated upon long term exposure of the GH3 cells to TRH (but not to vasoactive intestinal peptide = VIP).  相似文献   

3.
We monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of Gq/11α proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G11α. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and Gq/11α was assessed by agonist-stimulated [35S]GTPγS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations. A markedly lower sensitivity to stimulation with TRH was also observed in our experiments dealing with determination of hormone-induced Ca2+ response. These data suggest that the intact structure of plasma membranes is an important optimum signal transduction initiated by TRH receptors and mediated by Gq/11α proteins.  相似文献   

4.
The object of the present study was to determine the relative importance of Ca++ and cyclic nucleotides as “second messengers” in thyroliberin (TRH)-mediated prolactin (PRL) release in the GH3 and GH4 rat pituitary tumor cell lines. PRL, cyclic adenosine 3': 5'-monophosphate (cAMP), and cyclic guanosine 3': 5'-monophosphate (cGMP) were measured by radioimmunoassay (RIA) following TRH stimulation. TRH increased PRL release and cAMP levels in GH3 and GH4 cells, but cGMP increases were variable. Treatment with 1 mM theophylline increased PRL release and raised cAMP and cGMP. Addition of TRH to theophylline-pretreated cells produced further significant increases in PRL release without any additional increases in cAMP and cGMP. Co++, a Ca++ antagonist, abolished TRH-induced PRL release in a dose-dependent manner. The Co++ inhibition was partially reversed by Ca++ in GH3 or GH4 cells. Furthermore, the Ca++ ionophore A23187 stimulated PRL release. We conclude that Ca++ is the primary “second messenger” for TRH-mediated PRL release from GH3 or GH4 cells.  相似文献   

5.
The GH4C1 strain of hormone-producing rat pituitary cells has specific receptors for the tripeptide thyrotropin-releasing hormone (TRH). Membranes prepared from GH4C1 cells show intrinsic tryptophan fluorescence which was quenched by low concentrations (10–100 nM) of TRH and Nτ-methyl TRH but not by biologically inactive analogs of TRH. Membranes from GH4C1 cells were subjected to thermal denaturation. A conformational transition was noted above 40°C and an irreversible denaturation was observed at 52°C. TRH-induced quenching of intrinsic fluorescence was lost completely in membranes previously incubated for 10 min at 30°C while loss of [3H]-TRH binding was only about 20% at this temperature. Collisional quenching by iodide revealed that about 38% of the tryptophanyl residues in GH4C1 membranes were exposed to solvent. Quenching by TRH occurred with a shift in wavelength maximum from 336 to 342 nm suggesting that few of the tryptophanyl residues quenched by the tripeptide are totally exposed. Membranes prepared from cells preincubated with 20 nM TRH for 48 h, in which TRH receptors were decreased to 30% of control values, showed no quenching of tryptophan fluorescence in response to freshly added TRH. We conclude that the TRH-receptor interaction in GH4C1 cells is associated with a change in membrane conformation that can be measured by differential spectrofluorometry of intrinsic tryptophan fluorescence.  相似文献   

6.
Summary Chronic treatment (more than 3 d) of GH3 cells, cloned rat pituitary cells producing prolactin, with 100 nM TRH resulted in a 41% reduction in the rate of cell growth in a medium containing 0.5% fetal bovine serum. These effects of TRH appeared both in the medium containing a higher concentration of serum and in that containing six growth factors, i.e. insulin, transferrin, parathyroid hormone, fibroblast growth factor, triiodothyronine, and multiplication-stimulating activity (MSA) instead of serum. TRH stimulated prolactin production by GH3 cells in a dose-dependent manner both in the serum-supplemented and serum-free media. On the other hand, TRH, at 1 nM, elicited a 130% stimulation in the cellular growth, whereas, at concentrations of more than 10 nM, it inhibited the growth significantly. In the defined culture system, it was demonstrated that TRH stimulated prolactin production in the presence or absence of six growth factors, whereas its inhibitory effects on cellular growth appeared only in the presence of MSA regardless of the presence or absence of the other five factors. Furthermore, it was shown that a dose-dependent stimulatory effect of MSA on the growth of GH3 cells was suppressed by TRH. TRH exhibited only a stimulatory effect on cellular growth in the medium containing the five factors other than MSA. In conclusion, TRH could inhibit cell growth of GH3 in the presence of MSA in the defined medium or MSA-like factor(s) in the serum-supplemented medium.  相似文献   

7.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

8.
Phosphatidylinositol (Ptd Ins) breakdown in response to thyrotropin-releasing hormone (TRH) was measured after preincubation of both normal rat anterior pituitary cells and GH3 turnout cells with [3H]inositol by the determination of [3H]inositol phosphate accumulation in the presence of lithium (which inhibits myo-inositol phosphatase). The method employed, which was originally developed for use with tissue slices, was adapted for isolated cells in monolayer culture. In GH3 cells, TRH stimulated the breakdown of phosphoinositide in a manner similar to that reported previously using alternative methods. Furthermore, in normal male anterior pituitary cells the dose-response profile for TRH stimulation of inositol phosphate accumuJation was found to correlate well with the dose-response profile for TRH stimulation of prolactin secretion. As this response was maintained in the absence of added calcium, the breakdown of phosphoinositide would appear to be implicated as an event preceding calcium mobilization.  相似文献   

9.
In this study, we examined the binding of soluble TSP1 (and ox-LDL) to CD36-transfected cells and the mechanisms by which immobilized TSP1 mediated attachment and haptotaxis (cell migration towards a substratum-bound ligand) of these transfected cells. CD36 cDNA transfection of NIH 3T3 cells clearly induced a dramatic increase in binding of both soluble [125I]-TSP1 and [125I]-ox-LDL to the surface of CD36-transfected cells, indicating that there was a gain of function with CD36 transfection in NIH 3T3 cells. Despite this gain of function, mock- and CD36-transfected NIH 3T3 cells attached and migrated to a similar extent on immobilized TSP1. An anti-TSP1 oligoclonal antibody inhibited CD36-transfected cell attachment to TSP1 while function blocking anti-CD36 antibodies, alone or in combination with heparin, did not. A series of fusion proteins encompassing cell-recognition domains of TSP1 was then used to delineate mechanisms by which NIH 3T3 cells adhere to TSP1. Although CD36 binds soluble TSP1 through a CSVTCG sequence located within type 1 repeats,18,19 CD36-transfected NIH 3T3 cells did not attach to immobilized type 1 repeats while they did adhere to the N-terminal, type 3 repeats (in an RGD-dependent manner) and the C-terminal domain of TSP1. Conversely, Bowes melanoma cells attached to type 1 repeats and the N- and C-terminal domains of TSP1. However, CD36 cDNA transfection of Bowes cells did not increase cell attachment to type 1 repeats compared to that observed with mock-transfected Bowes cells. Moreover, a function blocking anti-CSVTCG peptide antibody did not inhibit the attachment of mock- and CD36-transfected Bowes cells to type 1 repeats. It is suggested that CD36/TSP1 interaction does not occur upon cell–matrix adhesion and haptotaxis because TSP1 undergoes conformational changes that do not allow the exposure of the CD36 binding site. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
The GnRH receptor is coupled to G proteins of the families Gq and G11. Gq and G11 coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families Gs, Gi, Gq and G11 complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (Gq, G11 and Gs, Gi) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH3) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.  相似文献   

13.
Objectives: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins.

Methods: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP).

Results: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling.

Conclusion: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.  相似文献   


14.
G-proteins transduce signals along diverse pathways, but the factors involved in pathway selection are largely unknown. Here, we have studied the ability of Gαq to select between two effectors—mammalian inositide-specific phospholipase Cβ (PLCβ) and phosphoinositide-3-kinase (PI3K)—in human embryonic kidney 293 cells. These studies were carried out by measuring interactions between eCFP- and eYFP-tagged proteins using Forster resonance energy transfer in the basal state and during stimulation. Instead of association of Gαq with effectors through diffusion and exchange, we found separate and stable pools of Gαq-PLCβ and Gαq-PI3K complexes existing throughout the stimulation cycle. These separate complexes existed despite the ability of Gαq to simultaneously bind both effectors as determined by in vitro measurements using purified proteins. Preformed G-protein/effector complexes will limit the number of pathways that a given signal will take, which may simplify predictive models.  相似文献   

15.
Following agonist action, G-protein-coupled receptors may exhibit differential coupling to G-proteins or second messenger pathways, supporting the notion of agonist-directed trafficking. To explore these mechanisms, we have designed and transfected synthetic siRNA duplexes to knockdown different Gα subunits in Chinese hamster ovary (CHO) cells expressing human (h)5-hydroxytryptamine 1A receptors (CHO-h5-HT1A). siRNAs against Gαi2 and Gαi3 transfected alone or in combination caused a large decrease in the corresponding mRNA level (64-80%) and also at the protein level for Gαi3 (60-70%), whereas a non-specific siRNA showed no effect. In membranes of CHO-h5-HT1A, 5-HT stimulated guanosine-5′-O-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding was differentially affected by transfection of siRNAs against Gαi protein, siRNAs against Gαi2 inducing a more important decrease in the efficacy of 5-HT than transfection of siRNAs against Gαi3. The high potency component was abolished after transfection of siRNAs against Gαi3 and the lower potency component was suppressed after transfection of siRNAs against Gαi2. To directly investigate Gαi3 activation we used an antibody-capture/scintillation proximity assay. (+)8-OH-DPAT yielded bell-shaped curves for Gαi3 activation, a response that was abolished after transfection of siRNAs against Gαi3 protein. Interestingly, (+)8-OH-DPAT yielded a sigmoidal response when only Gαi3 protein was expressed. These data suggest that when efficacious agonists attain a high level of occupation of h5-HT1A receptors, a change occurs that induces coupling to Gαi2 protein and suppresses signalling through Gαi3 subunits.  相似文献   

16.
17.
Cardiomyocytes have a complex Ca2+ behavior and changes in this behavior may underlie certain disease states. Intracellular Ca2+ activity can be regulated by the phospholipase Cβ–Gαq pathway localized on the plasma membrane. The plasma membranes of cardiomycoytes are rich in caveolae domains organized by caveolin proteins. Caveolae may indirectly affect cell signals by entrapping and localizing specific proteins. Recently, we found that caveolin may specifically interact with activated Gαq, which could affect Ca2+ signals. Here, using fluorescence imaging and correlation techniques we show that Gαq-Gβγ subunits localize to caveolae in adult ventricular canine cardiomyoctyes. Carbachol stimulation releases Gβγ subunits from caveolae with a concurrent stabilization of activated Gαq by caveolin-3 (Cav3). These cells show oscillating Ca2+ waves that are not seen in neonatal cells that do not contain Cav3. Microinjection of a peptide that disrupts Cav3-Gαq association, but not a control peptide, extinguishes the waves. Furthermore, these waves are unchanged with rynaodine treatment, but not seen with treatment of a phospholipase C inhibitor, implying that Cav3-Gαq is responsible for this Ca2+ activity. Taken together, these studies show that caveolae play a direct and active role in regulating basal Ca2+ activity in cardiomyocytes.  相似文献   

18.
Specific high affinity binding sites for [3H]1α, 25-dihydroxy-vitamin D3 were observed in nuclear fractions of rat pituitary adenoma GH3 cells. Crude nuclear (P1) sites demonstrated a pharmacological specificity for vitamin D3 metabolites and analogues that was in accord with the characteristics of 1α, 25-dihydroxyvitamin D3 receptors in recognized target organs. GH3 cells grown in serum-containing medium contained significant amounts of 1α, 25-dihydroxy-vitamin D3 in a P1 extract, whereas no 1α, 25-dihydroxyvitamin D3 was detectable in P1 extracts from cells cultured in the absence of serum. Binding of [3H]1α, 25-dihydroxyvitamin D3 to the P1 fraction was unaffected by prior depletion of intracellular 1α, 25-dihydroxyvitamin D3, suggesting that association of [3H]1α, 25-dihydroxyvitamin D3 to nuclear sites is not attributable to translocation of a cytosolic hormone-receptor complex and molecular exchange. The results support the concept that 1α, 25-dihydroxyvitamin D3 has a physiological role in mediating pituitary hormone secretion.  相似文献   

19.
Summary The hybrid GH cell strain, 928-9b, isolated from PRL+ (prolactin [PRL] producing) GH4Cl and PRL (PRL non-producing) FIBGH12CI cells, has specific TRH (thyroliberin) receptors, yet does not respond to this peptide hormone. Unlike the parent strain, GH4Cl, TRH does not stimulate synthesis or release of PRL in the hybrid strain. In contrast, treatment of 928-9b cells with another peptide, EGF (epidermal growth factor), stimulates both release and synthesis of PRL. The number of EGF receptors in the hybrid strain (2.5 × 103/cell) and the affinity of these receptors for ligand (2.2 nM) are comparable to that of the parent strain, GH4C1. The EGF dose response curve is also essentially the same for parent and hybrid cells for the enhancement of PRL production. A 3-8-fold enhancement of PRL production is observed and 1/2 maximal enhancement occurs at approximately 5 × 1011 M EGF for both strains. TRH does not have any potentiating effect on EGF-induced stimulation of PRL release or PRL synthesis in the hybrid strain. Although EGF and TRH have similar biological effects in responsive GH cells, binding of one hormone to its receptors does not modulate the binding of the heterologous hormone. These findings demonstrate that more than one effect of TRH is defective in 928-9b cells even though EGF responses are intact. This suggests that 1) TRH-stimulated PRL release and TRH-stimulated PRL production have a common intermediate step, and 2) TRH and EGF have a different mechanism of action in GH cells.  相似文献   

20.
A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 μM, which was superior to that of colchicine (IC50 = 1.34 μM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号