首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism whose action is mediated by high affinity cell surface receptors and bioactivity and bioavailability regulated, in part, by IGF-1 binding proteins (IGFBPs). Prostaglandin E2 (PGE2) stimulates collagen and proteoglycan synthesis in cartilage via an autocrine feedback loop involving IGF-1. We determined whether the eicosanoid could regulate IGFBP-4, a major form expressed by chondrocytes and, as such, act as a modifier of IGF-1 action at another level. Using human articular chondrocytes in high-density primary culture, Western and Western ligand blotting to measure secreted IGFBP-4 protein, and Northern analysis to monitor IGFBP-4 mRNA levels, we demonstrated that PGE2 provoked a 2.7 ± 0.3- and 3.8 ± 0.5- (n = 3) fold increase in IGFBP-4 mRNA and protein, respectively. This effect was reversed by the Ca++ channel blocker, verapamil, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2. The phorbol ester, PMA, which activated phospholipid-dependent protein kinase C (PKC) in chondrocytes, had no effect on IGFBP-4 production. Cyclic AMP mimetics and PKA activators, IBMX, and Sp-cAMP, inhibited the expression of the binding protein as did the PGE2 secretagogue, interleukin-1β (IL-β). The inhibitory effect of the latter cytokine was mediated by a erbstatin/genistein (tyrosine) sensitive kinase. Dexamethasone, an inhibitor of cyclooxygenase (COX-2) expression and PGE2 synthesis, down-regulated control, constitute levels of IGFBP-4 mRNA and protein, eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2-receptor signalling pathways. The results suggest that extracellular signals control IGFBP-4 production by a number of different transducing networks with changes in Ca++ and calmodulin activity exerting a strong positive influence, possibly maintaining the constitutivity of IGFBP-4 synthesis under basal conditions. PGE2 activation of the IGF-1/IGFBP axis may play a pivotal role in the metabolism of cartilage and possibly connective tissues in general. Eicosanoid biosynthesis may be a rate-limiting step in cartilage repair processes. J. Cell. Biochem. 65:408–419. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Previous data showed that prostaglandin E2 (PGE2) mediates the inhibitory effect of bradykinin (BK) on proximal tubule (PT) Na+-ATPase activity. The aim of this work was to investigate the molecular mechanisms involved in the effect of PGE2 on PT Na+-ATPase. We used isolated basolateral membrane (BLM) from pig PT, which expresses several components of different signaling pathways. The inhibitory effect of PGE2 on PT Na+-ATPase activity involves G-protein and the activation of protein kinase A (PKA) because: (1) PGE2 increased [35S]GTPγS binding; (2) GDPβS abolished the inhibitory effect of PGE2; (3) PGE2 increased PKA activity; (4) the inhibitory effect of PGE2 was abolished by PKA inhibitor peptide. We observed that the PKA-mediated inhibitory effect of PGE2 on PT Na+-ATPase activity requires previous activation of protein kinase C. In addition, we observed that PGE2 stimulates Ca2+-independent phospholipase A2 activity representing an important positive feedback to maintain the inhibition of the enzyme. These results open new perspectives to understanding the mechanism involved in the effect of PGE2 on proximal tubule sodium reabsorption.  相似文献   

3.
Prostaglandin E2 (PGE2) is well known to regulate cell functions through cAMP; however, the role of exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA) in modulating such functions is unknown in human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs). Therefore, we investigated the relationship between Epac1 and PKA during PGE2‐induced hUCB‐MSC proliferation and its related signaling pathways. PGE2 increased cell proliferation, and E‐type prostaglandin (EP) 2 receptor mRNA expression level and activated cAMP generation, which were blocked by EP2 receptor selective antagonist AH 6809. PGE2 increased Epac1 expression, Ras‐related protein 1 (Rap1) activation level, and Akt phosphorylation, which were inhibited by AH 6809, adenylyl cyclase inhibitor SQ 22536, and Epac1/Rap1‐specific siRNA. Also, PGE2 increased PKA activity, which was inhibited by AH 6809, SQ 22536, and PKA inhibitor PKI. HUCB‐MSCs were incubated with the Epac agonist 8‐pCPT‐cAMP or the PKA agonist 6‐phe‐cAMP to examine whether Epac1/Rap1/Akt activation was independent of PKA activation. 8‐pCPT‐cAMP increased Akt phosphorylation but not PKA activity. 6‐Phe‐cAMP increased PKA activity, but not Akt phosphorylation. Additionally, an Akt inhibitor or PKA inhibitor (PKI) did not block the PGE2‐induced increase in PKA activity or Akt phosphorylation, respectively. Moreover, PGE2 increased glycogen synthase kinase (GSK)‐3β phosphorylation and nuclear translocation of active‐β‐catenin, which were inhibited by Akt inhibitor or/and PKI. PGE2 increased c‐Myc and vascular endothelial growth factor (VEGF) expression levels, which were blocked by β‐catenin siRNA. In conclusion, PGE2 stimulated hUCB‐MSC proliferation through β‐catenin‐mediated c‐Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation. J. Cell. Physiol. 227: 3756–3767, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
This study describes the mechanisms involved in the IGF-1 and IGF-2-induced increases in intracellular calcium concentration [Ca2+]i in cultured chondrocytes and the involvement of type 1 IGF receptors. It shows that IGF-1, IGF-2, and insulin increased the cytosolic free calcium concentration [Ca2+]i in a dose-dependent manner, with a plateau from 25 to 100 ng/ml for both IGF-1 and IGF-2 and from 1 to 2 μg/ml for insulin. The effect of IGF-1 was twice as great as the one of IGF-2, and the effect of insulin was 40% lower than IGF-1 effect. Two different mechanisms are involved in the intracellular [Ca2+]i increase. 1) IGF-1 and insulin but not IGF-2 involved a Ca2+ influx through voltage-gated calcium channels: pretreatment of the cells by EGTA and verapamil diminished the IGF-1 or insulin-induced[Ca2+]i but did not block the effect of IGF-2.2)IGF-1, IGF-2, and insulin also induced a Ca2+ mobilization from the endoplasmic reticulum: phospholipase C (PLC) inhihitors, neomycin, or U-73122 partially blocked the intracellular [Ca2+]i increase induced by IGF-1 and insulin and totally inhibited the effect of IGF-2. This Ca2+ mobilization was pertussis toxin (PTX) dependent, suggesting an activation of a PLC coupled to a PTX-sensitive G-protein. Lastly, preincubation of the cells with IGF1 receptor antibodies diminished the IGF-1-induced Ca2+ spike and totally abolished the Ca2+ influx, but did not modify the effect of IGF-2. These results suggest that IGF-1 action on Ca2+ influx involves the IGF1 receptor, while part of IGF-1 and all of IGF-2 Ca2+ mobilization do not implicate this receptor. J. Cell. Biochem. 64:414–422. © 1997 Wiley-Liss, Inc.  相似文献   

5.
We have demonstrated that adenosine did not produce any change of intracellular free Ca2+ concentration ([Ca2+]i) in oviductal ciliated cells; however, it increased the ATP-induced Ca2+ influx through the activation of protein kinase A (PKA). Uncaging of IP3 and cAMP triggered a larger Ca2+ influx than did IP3 alone. Furthermore, the IP3 effect was abolished by Xestospongin C, an IP3 receptor blocker. Whole-cell recordings demonstrated the presence of an ATP-induced Ca2+ current, and the addition of adenosine increased the peak of this current. This effect was not observed in the presence of H-89, a PKA inhibitor. Using excised macro-patches of plasma membrane, IP3 generated a current, which was higher in the presence of the catalytic PKA subunit and this current was blocked by Xestospongin C. We show here that activation of plasma membrane IP3 receptors directly triggers Ca2+ influx in response to ATP and that these receptors are modulated by adenosine-activated PKA.  相似文献   

6.
7.
8.
Intracellular Ca2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [3H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca2+ and cAMP signaling pathways. Histamine stimulated Ca2+ release through inositol 1,4,5-trisphosphate (IP3) receptors in hBASMCs. β2-adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca2+ signals. Responses to other Ca2+-mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E2 (PGE2), through EP2 and EP4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca2+ signals. There was no consistent relationship between the inhibition of Ca2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP2 and EP4 receptors, through cAMP and PKA, selectively inhibit Ca2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition.  相似文献   

9.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

10.
Concentrations of prostaglandin E1 (PGE1; 10?7 M) that do not elicit tension responses in aortic strips potentiate contractions induced by submaximal concentrations (10?8 ? 10?7 M) of norepinephrine (NE) or angiotensin III (Ang III) but not those of high K+ depolarization or maximal NE or Ang III concentrations. Higher concentrations of PGE1 (10?6 M and above) initiate contractions which are additive with submaximal responses to NE and Ang III but not to K+. These same concentrations of PGE1 also decrease 45Ca retention at high affinity La+++-resistant sites in a manner similar to but not additive with NE and Ang III. Uptake of 45Ca at low affinity La+++-resistant sites (which is increased by high K+-depolarization) is not altered by 10?6 M PGE1. The effects of PGE1 are not altered by decreased extracellular Ca++ (0.1 mM), decreased temperature, phentolamine or meclofenamate. Thus, PGE1 does not appear to increase uptake of extracellular Ca++ in this smooth muscle tissue. Instead, PGE1 increases mobilization of Ca++ from the same high affinity La+++-resistant sites affected by Ang III and NE and, in this manner, may increase responses to these two stimulatory agents.  相似文献   

11.
Abstract— Regulations of the increase in intracellular Ca2+concentration ([Ca2+]i) and inositol 1, 4, 5-trisphosphate (IP3) production by increasing intracellular cyclic AMP (cAMP) levels or activating protein kinase C (PKC) were studied in rat frontocortical cultured neurons. Amitriptyline (AMI; 1 mM), a trìcyclic antidepressant, and bradykinin (BK; 1 μM) stimulated IP3 production and caused transient [Ca2+]i increases. Pretreatment with forskolin (100mkUM, 15 min) decreased the AMI-and BK-induced [Ca2+]i increases by 33 and 48%, respectively. However, this treatment had no effect on the AMI-and BK-induced IP3 productions. Dibutyryl-cAMP (2 mM, 15 min) also decreased the AMI-and BK-induced [Ca2+]i increases by 23 and 47%, respectively. H-8 (30 μM), an inhibitor of protein kinase A (PKA), attenuated the ability of forskolin to inhibit the AMI-and BK-induced [Ca2+]i increases, suggesting that the activation of cAMP/PKA was involved in these inhibitory effects of forskolin. On the other hand, forskolin treatment had no effect on 20 mM caffeine-, 10 μM glutamate-, or 50 mM K+-induced [Ca2+]i increases. Pretreatment with phorbol 12-myristate 13-acetate (PMA; 100 nM, 90 min) decreased both the AMI-induced [Ca2+]i increases and the IP3 production by 31 and 25%, respectively. H-7 (200 μM), an inhibitor of PKC, inhibited the ability of PMA to attenuate the [Ca2+]i increases. PMA also inhibited the BK-induced IP3 production and the [Ca2+]i increases. Taken together, these results suggest that activation of cAMP/ PKA may inhibit the IP3-mediated Ca2+ release from internal stores; on the other hand, activation of PKC may inhibit the phosphatidylinositol 4,5-bisphosphate breakdown and consequently reduce the [Ca2+]i increases or inhibit independently both responses. PKA and PKC may differently regulate the phosphatidylinositol-Ca2+ signaling in rat frontocortical cultured neurons.  相似文献   

12.
Rat pancreas pieces spontaneously released PGE2 (2.3 ng/100 mg × 45 min) and PGF (7.6 ng/100 mg × 45 min). This release corresponds probably to a neo-synthesis since it was abolished by indomethacin. Carbamylcholine (≥ 10 μM), caerulein (≥ 10 nM) and secretin (≥ 10 nM) stimulated the release of PGE2 and PGF : the concentrations of stimulators required to increase PGs release were thus much higher than those which trigger enzyme secretion. Atropine specifically inhibited the cholinergic stimulation, whereas indomethacin blocked the stimulatory effects of all secretagogues. Stimulation of PGE2 and PGF release was reduced in a Ca++-free medium, abolished by EGTA and mimicked by the ionophore A23187, underscoring the crucial role of Ca++ in the regulation of PGs synthesis by the pancreas. Neither PGE2 nor PGF stimulated enzyme secretion in this system and indomethacin did not inhibit the secretory effect of carbamylcholine. Increased synthesis of prostaglandins in response to pancreatic secretagogues does not appear to be involved in the process of enzyme secretion.  相似文献   

13.
Rinsing actively contracting rabbit testes in vitro with fresh Tyrode's solution abolished capsular contractions and the response of this preparation to either Ca++, serotonin, or acetylcholine. Adding exogenous prostaglandin E2 (PGE2) to the medium restored contractility and the responses of the preparation to each of the above three agents.4 A reciprocal dependency was observed between Ca++ and PGE2 in stimulating contractions. PGE2 potentiated, but was not required for the stimulatory action of either epinephrine or histamine. The stimulation of contractility by epinephrine, but not prostaglandin was inhibited by the α-blocking agent, ergotamine tartrate.4 This action of epinephrine did not involve prostaglandin release, nor was it inhibited by indomethacin pretreatment.4 Isoproterenol inhibited testicular contractions evoked by PGE2.  相似文献   

14.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

15.
The ubiquitous InsP3/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.  相似文献   

16.
Concentrations of prostaglandin E1 (PGE1; 10−7 M) that do not elicit tension responses in aortic strips potentiate contractions induced by submaximal concentrations (10−8 − 10−7 M) of norepinephrine (NE) or angiotensin III (Ang III) but not those of high K+ depolarization or maximal NE or Ang III concentrations. Higher concentrations of PGE1 (10−6 M and above) initiate contractions which are additive with submaximal responses to NE and Ang III but not to K+. These same concentrations of PGE1 also decrease 45Ca retention at high affinity La+++-resistant sites in a manner similar to but not additive with NE and Ang III. Uptake of 45Ca at low affinity La+++-resistant sites (which is increased by high K+-depolarization) is not altered by 10−6 M PGE1. The effects of PGE1 are not altered by decreased extracellular Ca++ (0.1 mM), decreased temperature, phentolamine or meclofenamate. Thus, PGE1 does not appear to increase uptake of extracellular Ca++ in this smooth muscle tissue. Instead, PGE1 increases mobilization of Ca++ from the same high affinity La+++-resistant sites affected by Ang III and NE and, in this manner, may increase responses to these two stimulatory agents.  相似文献   

17.
Interstitial cells of Cajal (ICC) serve as electrical pacemakers in the rabbit urethra. Pacemaking activity in ICC results from spontaneous intracellular Ca2+ waves that rely on Ca2+ release from endoplasmic reticulum (ER) stores. The purpose of this study was to investigate if the action of protein kinase A (PKA) affected the generation of Ca2+ waves in ICC. Intracellular [Ca2+] was measured in fluo-4 loaded ICC, freshly isolated from the rabbit urethra using a Nipkow spinning disc confocal microscope. Application of the PKA inhibitor H-89 (10 μM) significantly inhibited the generation of spontaneous Ca2+ waves in ICC and this was associated with a significant decrease in the ER Ca2+ load, measured with 10 mM caffeine responses. Ca2+ waves could be rescued in the presence of H-89 by stimulating ryanodine receptors (RyRs) with 1 mM caffeine but not by activation of inositol 1,4,5 tri-phosphate receptors (IP3Rs) with 10 μM phenylephrine. Increasing intracellular PKA with the cAMP agonists forskolin and 8-bromo-cAMP failed to yield an increase in Ca2+ wave activity. We conclude that PKA may be maximally active under basal conditions in ICC and that inhibition of PKA with H-89 leads to a decreased ER Ca2+ load sufficient to inactivate IP3Rs but not RyRs.  相似文献   

18.
There have been several lines of evidence that parathyroid hormone (PTH) stimulates production of insulinlike growth factor I (IGF-I) in bone and that IGF-I stimulates osteoclast formation. Thus, the present study was performed to clarify the possible role of IGF-I in PTH-stimulated osteoclastlike cell formation and the role of PTH-responsive dual signal transduction systems (cyclic [c] AMP-dependent protein kinase [PKA] and calcium/protein kinase C [PKC]) in its mechanism. Treatment with anti-IGF-I antibody (1–10 μg/ml) partially but significantly blocked hPTH-(1-34)-stimulated osteoclastlike cell formation in unfractionated mouse bone cell cultures, although it did not affect osteoclastlike cell formation stimulated by 1,25-dihydroxyvitamin D3. Rp-cAMPS (10-4 M), a direct PKA inhibitor, as well as two types of PKC inhibitors, H-7 (10 μM) and staurosporine (3 nM), and dantrolene (10-5 M), an inhibitor of calcium mobilization from intracellular calcium stores, all significantly blocked PTH-stimulated osteoclastlike cell formation. Anti-IGF-I antibody (3 μg/ml) significantly blocked osteoclastlike cell formation stimulated by 10-4 M dbcAMP, 10-4 M Sp-cAMPS, a direct PKA activator, and 10-5 M forskolin in mouse bone cell cultures. Dibutyryl cAMP, forskolin, and hPTH-(1-34) significantly stimulated mRNA expression of both IGF-I and IGF-binding protein 5 (IGFBP-5) in these cultures, but neither 10-7 M PMA, a PKC activator, nor 10-7 M A23187 did. Moreover, anti-IGF-I antibody significantly blocked osteoclastlike cell formation stimulated by the conditioned medium from MC3T3-E1 cells pretreated with 10-8 PTH-(1-34), which induced IGF-I and IGFBP-5 mRNA expression in these cells. In conclusion, the present study indicates that IGF-I mediates osteoclastlike cell formation stimulated by PTH and that the PKA pathway is involved in its mechanism. However, IGF-I does not seem to be the sole effector molecule to be active in this system. J. Cell. Physiol. 172:55–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

20.
We examined the distribution of insulin-like growth factor binding proteins (IGFBPs) in cultured neonatal mouse calvariae. IGFBP-3 and -4 were predominantly found in the conditioned medium. IGFBP-2 was partitioned between conditioned medium and bone and extracellular matrix (BECM), while intact (31-kDa) IGFBP-5 was most abundant in BECM extracts. After treatment with parathyroid hormone (PTH, 10−8 M) or prostaglandin E2 (PGE2, 10−6 M), immunoreactive IGFBP-5 accumulated in the conditioned medium in a 21-kDa form which did not bind IGF-I on Western ligand blots. PTH and PGE2 did not alter the level of steady-state IGFBP-5 mRNA, nor markedly stimulate IGFBP-5 synthesis in the calvariae, and thus accumulation of 21-kDa IGFBP-5 was largely due to release from BECM. This accumulation of truncated IGFBP-5 in the conditioned medium was not dependent on osteoclastic bone resorption, since it was not blocked by calcitonin or a bisphosphonate which inhibited PTH- and PGE2-stimulated 45Ca-release. The conditioned medium from PTH- or PGE2-treated cultures degraded recombinant human IGFBP-5 into lower molecular weight fragments. Addition of IGF-I at 10−8 M into the culture resulted in accumulation of native 31-kDa IGFBP-5. However, even in the presence of IGF-I, the native IGFBP-5 was degraded and the 21-kDa product accumulated in the culture medium. These results suggested a possible proteolytic mechanism for 21-kDa IGFBP-5 accumulation, responsive to PTH and PGE2. Aprotinin, leupeptin, cystatin, and bestatin did not inhibit the effects of PTH and PGE2 in the cultures. The localization of IGFBP-5 in BECM and its release and proteolysis induced by PTH and PGE2 could play a role in the local regulation of bone metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号