首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Life sciences》1993,53(22):PL359-PL364
This study examines the mechanism of action of ketamine, a dissociative anesthetic, with a specific focus on its ability to inhibit changes in the concentration of intracellular free calcium, [Ca2+]i, in PC-12 cells. The resting [Ca2+]i as measured with the fluorescent probe Fura-2 AM in control cells is 184.8±8.6 nM (mean±SEM, n = 15). Changes in [Ca2+]i via influx through voltage-gated calcium channels after membrane depolarization with potassium chloride were monitored in the absence and presence of various concentrations of ketamine. Potassium-depolarization caused a dose-dependent rapid increase in [Ca2+]i, averaging 62±5%, 33±2% and 18±3% (n = 10 each) above control levels for 70 mM, 50 mM and 35 mM KCl, respectively. Ketamine, in the dosage range studied (5 – 500 μM), inhibited the increase in [Ca2+]i stimulated by potassium-depolarization in a dose-dependent manner. The computer-fitted dose-response curve of the pooled data yielded a half maximal suppression concentration, ED50, of 33 μM. In conclusion, this study demonstrates that ketamine inhibits Ca2+ influx through voltage-gated Ca2+ channels in PC-12 cells at clinically relevant doses, and may play a role in ketamine's action as a general anesthetic agent.  相似文献   

2.
1. Hen tracheal epithelium can be stimulated by serosal application of acetylcholine (ACh) to secrete Cl equal to ~ 60–90 μA/cm2.2. Radio-ligand-displacement for IP3, cAMP and cGMP and ion channel selective drugs in voltage clamp setups were employed to characterize second messengers and Cl, K+ and Ca2+ channels involved in the ACh response.3. ACh induced a significant rise in IP, in isolated tracheocytes, while ACh did not influence the production of cAMP in whole tissue, isolated tracheocytes or basolateral cell membrane vesicles. Further ACh desensitization did not effect cAMP level in tracheocytes. In addition neither ACh stimulation nor desensitization interfered with cAMP production in presence of 4.5 μM forskolin in tracheocytes, a level of forskolin rising base level cAMP by around five fold.4. Around 35% of ACh Cl secretion depends on Ca2+ mobilization from internal stores and about 65% on Ca2+ influx over basolateral membrane. The activated Ca2+ channel is insensitive to class I, II, III and IV Ca2+ antagonists.5. A 23187 can mimic the ACh effect although 30% is indomethacin-sensitive demonstrating a prostaglandin activated adenylyl cyclase.6. Two K+ channels are involved in ACh secretion, one sensitive to Ba2+ and quinine and both insensitive to 4-aminopyridine, apamin, charybdotoxin and TEA.7. Flufenamate and triaminopyrimidine block a non-selective ion channel likely involved in the ACh response. An ACh activated apical Cl channel is NPPB-sensitive.  相似文献   

3.
Ionic channels regulated by extracellular Ca2+ concentration ([Ca2+]0) were examined in freshly isolated rabbit osteoclasts. K+ current was suppressed by intracellular and extracellular Cs+ ions. In this condition, high [Ca2+]0 evoked an outwardly rectifying current with a reversal potential of about −25 mV. When the concentration of extracellular Cl ions was altered, the reversal potential of the outwardly rectifying current shifted as predicted by the Nernst equation. 4′,4-diisothiocyanostilbene-2′,2-disulphonic acid (DIDS) inhibited the outwardly rectifying current. These results indicated that this current was carried through Cl channels. Cd2+ or Ni2+ caused a transient activation of the Cl current in contrast to the sustained activation elicited by Ca2+. Intracellular 20 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) inhibited the divalent cation-induced Cl current. Either when the osmolarity of extracellular medium was increased, or when 100 μM cAMP was dissolved in the patch pipette solution, high [Ca2+]0 still elicited the Cl current, indicating that the divalent cation-induced Cl current was carried through Ca2+-activated Cl channels. Under perforated whole cell clamp extracellular divalent cations evoked the Cl current, indicating that the activation of Cl current did not arise from possible leakage of divalent cations from the extracellular medium under the whole cell clamp condition. This experiment further excluded a possible activation of volume-sensitive Cl channels under whole cell clamp. Intracellular application of guanosine 5′-O-(3-thiotriphosphate) (GTPγS) activated the Cl current and it was inhibited by intracellular 20 mM EGTA, suggesting that the activation of Cl current was mediated through a G protein, and that an increase in [Ca2+]i was critical for the activation of Cl channels. A protein phosphatase inhibitor, okadaic acid (100 nM), caused an irreversible activation of the Cl current, suggesting that protein phosphatase 1 or 2A was involved in the regulation of Ca2+-activated Cl channels. © 1996 Wiley-Liss, Inc.  相似文献   

4.
《BBA》1987,890(1):89-96
Electron donation to Photosystem II (PS II) by diphenylcarbazide (DPC) is interrupted by the presence of endogenous Mn in PS II particles. Removal of this Mn by Tris treatment greatly stimulates the electron transport with DPC as donor. Binding of low concentration of exogenous Mn(II) to Tris-treated PS II particles inhibits DPC photooxidation competitively with DPC. This phenomenon was used to locate a highly specific Mn(II) binding site on the oxidizing side of Photosystem II with dissociation constant about 0.15 μM. The binding of Mn(II) is electrostatic in nature. Its affinity depends not only on the ionic strength, but also on the anion species of the salt in the medium. The effectiveness in decreasing the affinity follows the order F > SO2−4 > CH3COO > CI > Br > NO3. This observation is interpreted as follows: smaller ions, like F, CH3COO, and larger ions, like SO2−4, have inhibitory effects on Mn(II) binding, whereas ions with optimal size, like Cl, Br and NO3, can stabilize the binding, resembling the anion requirement for reactivation of Cl-depleted chloroplasts. We suggest that the binding site for Mn(II) we observed is the site for the endogenous Mn in the O2-evolving complex of PS II. This site remains after Tris treatment, which removes all the endogenous Mn as well as the three extrinsic proteins, indicating that it is on the intrinsic component(s) of PS II reaction centers. Furthermore, the Cl requirement for O2 evolution may be attributed, at least partly to its stabilizing effect on Mn binding.  相似文献   

5.
Di- and tripeptides and peptide mimetics such as β-lactam antibiotics are efficiently reabsorbed from the tubular lumen by a high-affinity peptide transporter. We have recently identified and characterized this H+-coupled high-affinity peptide transport system in the porcine proximal tubular cell line LLC-PK1. Here we describe for the first time the regulation of the renal high-affinity peptide cotransporter at the cellular level. Uptake of 5 μM 3H-D-Phe-L-Ala into LLC-PK1 cells was significantly increased by lowering [Ca2+]in and decreased by increasing [Ca2+]in. Moreover, it was shown that the [Ca2+]in effects on peptide transport activity were dependent on Ca2+ entry from the extracellular site (e.g., via a store-regulated capacitative Ca2+ influx). Protein kinase C (PKC) was found to transmit the effects of [Ca2+]in on peptide transport. Although we demonstrate by pHin measurements that the PKC inhibitor staurosporine did decrease the transmembrane H+ gradient and consequently should have reduced the driving force for peptide uptake, the only effect on transport kinetics of 3H-D-Phe-L-Ala observed was a significant decrease in Km from 22.7 ± 2.5 μM to 10.2 ± 1.9 μM with no change in maximal velocity. J. Cell. Physiol. 178:341–348, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

7.
The calcium ionophore A23187 stimulates luminal alkalinization and inhibits Cl absorption in short-circuited urinary bladders of postprandial or alkalotic turtles. The ionophore appears to mimic the action of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) by its similar effects on HCO3 secretion and Cl absorption and by increasing cytosolic cAMP levels of isolated bladder epithelial cells. However, only A23187 (or ionomycin), but not IMBX or cAMP, elevated cytosolic Ca2+ of aequorin- or quin2-loaded cells. Since A23187, but not IBMX or cAMP inhibits luminal acidification, we postulate that cytosolic Ca2+ (1) regulates the acidification process by a cAMP-independent mechanism and (2) controls HCO3 secretion as well as Cl absorption, at least in part, via cAMP-mediated pathways.  相似文献   

8.
In the presence of 1.0 mM ATP and MgCl2, the specific viscosity of suspensions of human erythrocyte ghosts decreases 35% in 20 minutes at 22°C. The changes in viscosity are a sensitive index of Mg-ATP dependent shape changes in these membranes. Low concentrations of Ca2+ (1 to 5 μM) inhibit Mg-ATP dependent viscosity changes. If ghosts were preincubated with 1 mM Mg-ATP and 20 μM A23187 to produce a maximal decrease in viscosity, addition of 10 μM Ca2+ to the preincubated ghosts increased the viscosity to levels observed in ghosts preincubated without ATP. Ca2+ (1 to 5 μM) also inhibited Mg2+ dependent phosphorylation 30% and stimulated dephosphorylation 25% in ghost membranes. These effects of Ca2+ on viscosity and phosphorylation may be due to a membrane bound Ca2+ phosphatase activity which dephosphorylates membranes phosphorylated by a Mg2+ dependent kinase activity.  相似文献   

9.
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin.  相似文献   

10.
Nucleotide-metabolizing enzymes play important roles in the regulation of intracellular and extracellular nucleotide levels. We studied ATPase activity in the nervous ganglia of Phyllocaulis soleiformis, a terrestrial slug. The ATPase was divalent cation-dependent, with a maximal rate for ATP hydrolysis at pH 6.0 and 7.2 in the presence of Ca2+ (5 mM). Mg2+-ATPase activity was only 26% of the activity observed in the presence of Ca2+ (5 mM). ZnCl2 (10 mM) produced a significant inhibition of 70%. Ca2+-ATPase activity was insensitive to the classical ATPase inhibitors ouabain, N-ethylmaleimide, orthovanadate and sodium azide. Levamisole, an inhibitor of alkaline phosphatase, was ineffective. Among nucleotides, ATP was the best substrate. The apparent Km (ATP) for Ca2+-ATPase was 348±84 μM ATP and the Vmax was 829±114 nmol Pi min−1 mg−1 protein. The P. soleiformis ganglial ATPase does not appear to fit clearly into any of the previously described types of Ca2+-ATPases.  相似文献   

11.
Calcium regulation in the freshwater-adapted mummichog   总被引:2,自引:0,他引:2  
In light of recent findings of an unusual pattern of ionoregulation (high Na+ uptake and negligible Cl- uptake) in the freshwater-adapted mummichog Fundulus heteroclitus, the pattern of Ca2+ regulation was examined. Under control conditions (water Ca2+= 200μEq l-1), unidirectional Ca2+ influx was 11 ± 4 nEq g-1 h-1. Acute variation of external Ca2+ levels revealed a saturable Ca2+ uptake system with a relatively high affinity (Km= 125 ± 36 μEq 1-1) and a transport capacity (Jmax= 31 ± 4 nEq g-1 h-1) comparable to those of other teleosts. Lanthanum (equimolar to [Ca2+]) significantly blocked Ca2+ uptake by 67% whereas magnesium had no effect. Chronic low Ca2+ exposure (50 μEq 1-1) stimulated Ca2+ uptake almost three-fold above control values, whereas chronic high Ca2+ exposure (20000 μEq 1-1) had no effect. Lanthanum and chronic low Ca2+ treatments disturbed the normally positive Ca2+ and Na+ balances of the animals whereas acid-base balance and ammonia excretion were undisturbed. The results indicate that Ca2+ regulation by the mummichog conforms to the model for freshwater Ca2+ transport whereby chloride cells on the gills take up Ca2+ actively from the water. However, the absence of extra-intestinal Cl- uptake and the recent demonstration of significant Ca2+ uptake by opercular epithelia raise questions about the relative roles of branchial and opercular epithelial chloride cells in freshwater F. heteroclitus.  相似文献   

12.
We studied the effect of furosemide on GABAA-induced 36Cl transport and GABAA-induced Cl--ATPase activity in synaptic membranes of fish brain. At physiological pH 7.4, GABA (0.1–100 µM) stimulated 36Cl influx in synaptoneurosomes and Cl--ATPase activity in synaptic membranes. Furosemide (0.1–0.5 mM) removed the activating effect of the mediator on chloride transport and enzyme activity (I50 equaled 0.16 and 0.12 mM, respectively). In the absence of the mediator, picrotoxin (50 µM) activated the basal 36Cl influx in synaptoneurosomes and the basal Mg2+-ATPase activity of synaptic membranes. Furosemide (1 mM) removed the activating effect of picrotoxin on both biochemical processes. The obtained data demonstrated similar sensitivities of GABAA-induced transport of 36Cl in synaptoneurosomes and of GABAA-induced Cl--ATPase activity in the synaptic membranes to furosemide and indicated the involvement of the ATPase in GABAA-induced processes. The soluble ATPase, recovered by sodium deoxycholate solubilization of the membranes, remained sensitive to GABAA-ergic ligands, which suggested proximity of their binding sites with ATP hydrolysis sites in the protein molecule and their structural coupling.Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 1, 2005, pp. 18–22.Original Russian Text Copyright © 2005 by Menzikov, Menzikova.  相似文献   

13.
Perfused cell segments dissected from the stalk or from detached cap ray chambers of Acetabularia were used as an experimental system to study the induction of cytoplasmic contractions and concurrent cytoskeletal changes in plant cells. Immunofluorescence microscopy revealed that the actin cytoskeleton quickly rearranges upon induction of contraction by forming bundles oriented circumferentially around the affected area, whereas microtubules were not detected. Contraction is blocked by cytochalasin D or N-ethylmaleimide but is unaffected by microtubule specific inhibitors. Contraction requires external Ca2+ at concentrations of 1 μM or more, but fails to occur below 0.1 μM. Higher concentrations of Ca2+ up to 10 mM have no adverse effect. Contraction is prevented in the presence of micromolar Ca2+ by either 1 mM of the calcium channel blocker LaCl3 or 10 μM of the calmodulin inhibitor fluphenazine. Calcium ionophore A 23187 (1 μM) does not perturb wound contraction per se but causes the entire cytoplasm of wounded or unwounded cells to contract slowly. These data suggest that a localized influx of calcium ions at the wound edge causes major rearrangements in the distribution of cytoskeletal actin prior to contraction in Acetabularia. An involvement of calmodulin in calcium signaling is proposed.  相似文献   

14.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37°C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 μM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 μg/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

15.
  • 1.1. Unidirectional Na+ influx in lamprey red blood cells was determined using 22Na as a tracer.
  • 2.2. Total Na+ uptake and amiloride-inhibitable Na+ influx increased in a saturable fashion as a function of external Na+ concentration (Nae).
  • 3.3. At 141 mM Nae, the average value of net Na+ influx was 13 ± 1.1 and the amiloride-sensitive Na+ influx was 5.3±1.1 mmol/l cells per hr (±SE).
  • 4.4. The amiloride-sensitive component of Na+ influx was significantly activated by 10−5 M isoproterenol, by 2 × 10−5 M DNP, and by cell shrinkage.
  • 5.5. Furosemide (1 mM) had no effect on the Na+ transport in red cells.
  • 6.6. The residual amiloride-insensitive component of Na+ transport was a linear function of Nae in the range of 5–141 mM. This transport seems to be accounted for by simple diffusion.
  相似文献   

16.
Summary The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl conductance is increased 14-and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl conductance is rate limiting. An A23187-induced activation of42K and36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: (i) inhibited by quinine which blocks the Ca2+-activated K+ channel. (ii) unaffected by substitution of NO 3 or SCN for Cl, and (iii) inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl conductance. The Cl conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl transport pathway. The activated anion transport pathway is unselective, carrying both Cl, Br, NO 3 , and SCN. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by42K flux experiments and indirectly in media where the dominating anion (SCN) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from42K flux measurements at high external K+, and from net K flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.  相似文献   

17.
Loop diuretics such as bumetanide and furosemide enhance aminoglycoside ototoxicity when co-administered to patients and animal models. The underlying mechanism(s) is poorly understood. We investigated the effect of these diuretics on cellular uptake of aminoglycosides, using Texas Red-tagged gentamicin (GTTR), and intracellular/whole-cell recordings of Madin–Darby canine kidney (MDCK) cells. We found that bumetanide and furosemide dose-dependently enhanced cytoplasmic GTTR fluorescence by ~60 %. This enhancement was suppressed by La3+, a non-selective cation channel (NSCC) blocker, and by K+ channel blockers Ba2+ and clotrimazole, but not by tetraethylammonium (TEA), 4-aminopyridine (4-AP) or glipizide, nor by Cl? channel blockers diphenylamine-2-carboxylic acid (DPC), niflumic acid (NFA), and CFTRinh-172. Bumetanide and furosemide hyperpolarized MDCK cells by ~14 mV, increased whole-cell I/V slope conductance; the bumetanide-induced net current I/V showed a reversal potential (V r) ~?80 mV. Bumetanide-induced hyperpolarization and I/V change was suppressed by Ba2+ or clotrimazole, and absent in elevated [Ca2+]i, but was not affected by apamin, 4-AP, TEA, glipizide, DPC, NFA, or CFTRinh-172. Bumetanide and furosemide stimulated a surge of Fluo-4-indicated cytosolic Ca2+. Ba2+ and clotrimazole alone depolarized cells by ~18 mV and reduced I/V slope with a net current V r near ?85 mV, and reduced GTTR uptake by ~20 %. La3+ alone hyperpolarized the cells by ~?14 mV, reduced the I/V slope with a net current V r near ?10 mV, and inhibited GTTR uptake by ~50 %. In the presence of La3+, bumetanide-caused negligible change in potential or I/V. We conclude that NSCCs constitute a major cell entry pathway for cationic aminoglycosides; bumetanide enhances aminoglycoside uptake by hyperpolarizing cells that increases the cation influx driving force; and bumetanide-induced hyperpolarization is caused by elevating intracellular Ca2+ and thus facilitating activation of the intermediate conductance Ca2+-activated K+ channels.  相似文献   

18.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
We recently showed that the C-terminal fragment PTH (52–84) effectively increases intracellular free calcium ([Ca2+]i in a subset of growth plate chondrocytes not activated by the N-terminal PTH fragment (1–34). Here we characterize the active site on C-terminal PTH (52–84) with respect to calcium (Ca2+)-signaling and the mechanism involved by using synthetic PTH-subfragments in digital CCD ratio-imaging experiments. Our results show amino acids 73–76 to be the core region for increasing [Ca2+]i. Ryanodine (1 μM), caffeine (10 mM), lithium (2 mM), or cyclopiazonic acid (2–5 μMI), agents that interfere with intracellular Ca2+ release, all failed to block PTH (52–84) induced [Ca2+]i increases. Depletion of extracellular calcium ([Ca2+]o) blocked PTH (52–84) induced [Ca2+]; increases, indicating a transmembrane Ca2+ influx. In contrast to voltage-gated and Ca2+ release activated Ca2+ influx, PTH (52–84) evoked Ca2+ influx was not blocked by nickel (1 mM). We conclude that PTH amino acids 73–76 are essential for activation of a nickel-insensitive Ca2+ influx pathway in growth plate chondrocytes that is likely to be of relevance for matrix calcification, a key step in endochondral bone formation.  相似文献   

20.
Human fibroblasts that have been serum deprived for 4 hours have a digitoxin-insensitive Na influx of 9.5 ± 1.0 (n = 4) μmol/g prot/min which is not significantly different from the influx of 9.4 ± 0.6 (n = 3) μmol/g prot/min measured in cells arrested in the G1/G0 state by serum-deprivation for a period of four days. The Na influx in serum-deprived cells is rapidly stimulated (within one minute) simply by assaying the cells in medium containing 10% fetal bovine serum (FBS). The digitoxin-insensitive Na influx for cells in the presence of 10% FBS is 22.9 ± 1.1 (n = 6) μmol/g prot/min. the stimulation of Na influx in serumdeprived cells can also be achieved by the addition of the purified mitogen, epidermal growth factor (EGF). Addition of EGF to serum-deprived cells gives a maximal stimulation of Na influx of approximately 1.6-fold, with the concentration for half-maximal stimulation being 7.5 ng/ml. The stimulation of Na influx results from the activation of an amiloride-sensitive pathway, which appears to be minimally active in serum-deprived cells. Kinetic analysis of Na influx experiments in the presence of 10% FBS and varying concentrations of amiloride indicate that at infinite concentrations of amiloride the Na flux would be reduced to 8.9 μmol/g prot/min, which is comparable to the level of Na flux measured in serum-deprived cells in the presence of 5 mM amiloride. Thus, amiloride can totally inhibit the serum-stimulated component of Na influx while inhibiting less than 10% of the Na influx in serum-deprived cells. The Na influx in serum-deprived cells can also be stimulated 2.5-fold by preincubating cells in the presence of the Ca+ ionophore A23187 to elevate the intracellular Ca content. This stimulation of Na influx by intracellular Ca+2 can be virtually eliminated by adding 1 mM amiloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号