首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct mitogenic modes coexist in the physiologically relevant model ofprimary cultures of dog thyroid epithelial cells. The differentiation-associated mitogenicstimulation by TSH and cAMP specifically requires the assembly and activation of cyclin D3-cyclin-dependent kinase (CDK)4 associated to p27kip1, while the dedifferentiatingproliferation induced by growth factors is associated with induction of cyclin D1. Here, wesuggest that the related CDK “inhibitors” p21cip1 and p27 are differentially utilized as positiveCDK4 regulators in these mitogenic stimulations. p21 was induced by EGF+serum, butrepressed by TSH, which, as previously shown, up-regulates p27. In response to EGF+serum,p21 supported the nuclear localization, phosphorylation and pRb-kinase activity of CDK4.Unexpectedly, partly different site-specificities of pRb-kinase activity, leading to similardifferences in the phosphorylation pattern of pRb in intact cells, were associated with cyclinD3-CDK4 bound to p27 in TSH-stimulated cells, or with CDK4 bound to p21 in growthfactor-stimulated cells. These differences were ascribed to the predominant association of thelatter complex to cyclin D1. Indeed, in different cell types and species, cyclin D1 varied fromcyclin D3 by more efficiently driving the phosphorylation of pRb at sites (Ser807/811 andThr826) required for its electrophoretic mobility shift. Therefore, different D-type cyclinscould differently impact some pRb functions, which should be considered not only in theunderstanding of the relationships between cell cycle and differentiation expression in thedistinct mitogenic modes of thyroid cells, but also in various development or differentiationmodels associated with dramatic switches in the expression of individual D-type cyclins.  相似文献   

2.
Two distinct mitogenic modes coexist in thyroid epithelial cells. TSH via cAMP induces proliferation and differentiation expression, whereas growth factors including epidermal growth factor (EGF) induce proliferation and dedifferentiation. Divergent models of TSH/cAMP-dependent mitogenesis have emerged from different thyroid cell culture systems. In the FRTL-5 rat cell line, cAMP cross-signals with transduction pathways of growth factors to induce cyclin D1 and p21(cip1) and down-regulate p27(kip1). By contrast, in canine primary cultures, mitogenic pathways of cAMP and growth factors are fully distinct. cAMP does not induce D-type cyclins and p21, it up-regulates p27, and it stimulates the formation and activity of cyclin D3-cyclin-dependent kinase (CDK) 4 complexes. In primary cultures of normal human thyrocytes, EGF + serum increased cyclin D1 and p21 accumulation, and it stimulated the assembly and activity of cyclin D1-CDK4-p21 complexes. By contrast, TSH repressed or did not induce cyclin D1 and p21, and it rather up-regulated p27. TSH did not increase cyclin D1-CDK4 activity, but it stimulated the activating phosphorylation of CDK4 and the pRb-kinase activity of preexisting cyclin D3-CDK4 complexes. As recently demonstrated in dog thyrocytes and other systems, cyclin D1 and cyclin D3 differently oriented the site specificity of CDK4 pRb-kinase activity, which might differently impact some pRb functions. Cyclin D1 or cyclin D3 are thus differentially used in the distinct mitogenic stimulations by growth factors or TSH, and potentially in hyperproliferative diseases generated by the overactivation of their respective signaling pathways. At variance with dog thyroid primary cultures, rat thyroid cell lines might not be valid models of TSH-dependent mitogenesis of human thyrocytes.  相似文献   

3.
The synthesis of specific protein has been investigated in primary cultures of dog thyroid epithelial cells, which can be induced to progress into G1 phase, in the presence of insulin, by different types of mitogens: thyrotropin (TSH) acting through cyclic adenosine monophosphate (cAMP), epidermal growth factor (EGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or 10% serum. EGF, TPA, or serum specifically induce [35S] methionine labeling of protein 1 (Mr approximately 80,000). The effect of EGF on protein 1 labeling and DNA replication is dependent on insulin. The level of protein 1 labeling as well as that of DNA synthesis is higher when TSH or TSH + serum are added together with EGF. It peaks in mid-G1. TSH alone, in the presence of insulin, stimulates DNA replication without inducing protein 1 synthesis, which thus represents a cell-cycle-dependent event that is not obligatory in mitogenic activation through cyclic AMP. Among the eight proteins whose synthesis is stimulated by TSH, only the labeling of protein 7, molecular weight ratio (Mr approximately 38,000), correlates with the DNA synthetic activity of the cells. The present authors identified protein 7 as cyclin/proliferating cell nuclear antigen (PCNA), the auxiliary protein of DNA polymerase-delta. The effect of TSH on cyclin synthesis is already detectable when most of the cells are in late G1, but its stimulation by EGF or EGF + serum is delayed and detected only after extending the labeling period to the S-phase. These data support the view that the cAMP-mediated mitogenic pathway remains partly distinct from the better known pathways induced by growth factors and tumor promoters, even at late stages of the G1-phase.  相似文献   

4.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

5.
Dog thyroid epithelial cells in primary culture constitute a physiologically relevant model of positive control of DNA synthesis initiation and G0-S prereplicative phase progression by cAMP as a second messenger for thyrotropin (thyroid-stimulating hormone [TSH]). As previously shown in this system, the cAMP-dependent mitogenic pathway differs from growth factor cascades as it stimulates the accumulation of p27(kip1) but not cyclins D. Nevertheless, TSH induces the nuclear translocations and assembly of cyclin D3 and cdk4, which are essential in cAMP-dependent mitogenesis. Here we demonstrate that transforming growth factor beta(1) (TGFbeta(1)) selectively inhibits the cAMP-dependent cell cycle in mid-G1 and various cell cycle regulatory events, but it weakly affects the stimulation of DNA synthesis by epidermal growth factor (EGF), hepatocyte growth factor, serum, and phorbol esters. EGF+serum and TSH did not interfere importantly with TGFbeta receptor signaling, because they did not affect the TGFbeta-induced nuclear translocation of Smad 2 and 3. TGFbeta inhibited the phosphorylation of Rb, p107, and p130 induced by TSH, but it weakly affected the phosphorylation state of Rb-related proteins in EGF+serum-treated cells. TGFbeta did not inhibit c-myc expression. In TSH-stimulated cells, TGFbeta did not affect the expression of cyclin D3, cdk4, and p27(kip1), nor the induced formation of cyclin D3-cdk4 complexes, but it prevented the TSH-induced relocalization of p27(kip1) from cdk2 to cyclin D3-cdk4. It prevented the nuclear translocations of cdk4 and cyclin D3 without altering the assembly of cyclin D3-cdk4 complexes probably formed in the cytoplasm, where they were prevented from sequestering nuclear p27(kip1) away from cdk2. This study dissociates the assembly of cyclin D3-cdk4 complexes from their nuclear localization and association with p27(kip1). It provides a new mechanism of regulation of proliferation by TGFbeta, which points out the subcellular location of cyclin D-cdk4 complexes as a crucial factor integrating mitogenic and antimitogenic regulations in an epithelial cell in primary culture.  相似文献   

6.
J Correa-Bordes  M P Gulli    P Nurse 《The EMBO journal》1997,16(15):4657-4664
The fission yeast Schizosaccharomyces pombe CDK inhibitor p25rum1 plays a major role in regulating cell cycle progression during G1. Here we show that p25rum1 associates with the CDK p34cdc2/p56cdc13 during G1 in normally cycling cells and is required for the rapid proteolysis of p56cdc13. In vitro binding data indicate that p25rum1 has specificity for the B-cyclin p56cdc13 component of the CDK and can bind the cyclin even in the absence of the cyclin destruction box. At the G1-S-phase transition, p25rum1 levels decrease and p56cd13 levels increase. We also show that on release from a G1 block, the rapid disappearance of p25rum1 requires the activity of the CDK p34cdc2/cig1p and that this same CDK phosphorylates p25rum1 in vitro. We propose that the binding of p25rum1 to p56cdc13 promotes cyclin proteolysis during G1, with p25rum1 possibly acting as an adaptor protein, promoting transfer of p56cdc13 to the proteolytic machinery. At the G1-S-phase transition, p25rum1 becomes targeted for proteolysis by a mechanism which may involve p34cdc2/cig1p phosphorylation. As a consequence, at this point in the cell cycle p56cdc13 proteolysis is inhibited, leading to a rise of p56cdc13 levels in preparation for mitosis.  相似文献   

7.
An affinity-purified antibody (anti-Cdc2C) raised against the carboxy terminal sequence LDNQIKKM of p34cdc2 uncovered in NIH 3T3 cells a protein subpopulation, the location and the level of accumulation of which evolve during progression through the cell cycle: it first emerges inside the nucleus in late G1/early S phase and continues to build up principally in this location throughout S phase; a cytoplasmic expression then becomes apparent near the end of S phase, develops during G2 and sometimes prevails over the nuclear expression; it finally relocates to the nucleus in early prophase. We propose that a major part of this subpopulation would represent p34cdc2 molecules existing inside a complex with cyclin B1. NIH 3T3 cells arrested in early S phase with aphidicolin do not commit prematurely to mitosis which indicates that the regulatory pathway involved in preserving the temporal order of S and M phases is functioning in these conditions. Conjugated Western blot analysis and immunofluorescence microscopy showed that cyclin A, cyclin B1 and tyrosine-phosphorylated p34cdc2 continue to build up predominantly in the nucleus of the arrested cells. After release from the block, the cells rapidly reenter S and G2 phases and, concomitantly, cyclin B1 and tyrosine-phosphorylated p34cdc2 relocate to the cytoplasm before redistributing again in the nucleus in early prophase. These data would suggest that delaying the onset of M phase in NIH 3T3 cells in which the rate of DNA replication is reduced, is first ensured by a mechanism that prevents the cytoplasmic relocation of inactive p34cdc2/cyclin B1 complexes continually forming in the nucleus once the G1 period of mitotic cyclin instability is over.  相似文献   

8.
Human cyclin A is required for mitosis until mid prophase.   总被引:12,自引:0,他引:12  
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.  相似文献   

9.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

10.
Nuclear protein kinases   总被引:8,自引:0,他引:8  
  相似文献   

11.
The cAMP-dependent mitogenic stimulation elicited by thyroid-stimulating hormone (TSH) in primary cultures of canine thyroid epithelial cells is unique as it upregulates the cyclin-dependent kinase (CDK) inhibitor p27kip1 but not D-type cyclins. TSH and cAMP promote the assembly of required cyclin D3-CDK4 complexes and their nuclear import. Here, the nuclear translocation of these complexes strictly correlated in individual cells with the enhanced presence of nuclear p27. p27, like cyclin D3, supported the TSH-stimulated pRb-kinase activity of the CDK4 complex and, as demonstrated using the high-resolution power of the two-dimensional (2D) gel electrophoresis, the phosphorylation of CDK4, presumably by the nuclear CDK-activating kinase. In the presence of TSH, transforming growth factor beta (TGFbeta) did not affect the assembly of cyclin D3-CDK4, but it strongly inhibited the pRb-kinase activity associated with both cyclin D3 and p27, not only by preventing the nuclear import of cyclin D3-CDK4 and its binding to p27, but also by inhibiting CDK4 phosphorylation within residual p27-bound cyclin D3-CDK4 complexes. No alterations of the relative abundance of multiple (un)phosphorylated forms of cyclin D3 and p27 demonstrated by 2D-gel electrophoresis were associated with these processes. This study suggests a crucial positive role of p27 in the TSH-stimulated nuclear import, phosphorylation, and catalytic activity of cyclin D3-bound CDK4. Moreover, it demonstrates a technique to directly assess the in vivo phosphorylation of endogenous CDK4, which might appear as a last regulated step targeted by the antagonistic cell cycle effects of TSH and TGFbeta.  相似文献   

12.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

13.
Entry into mitosis by mammalian cells is triggered by the activation of the cdc2/cyclin B holoenzyme. This is accomplished by the specific dephosphorylation of key residues by the cdc25C phosphatase. The polo-like kinases are a family of serine/threonine kinases which are also implicated in the control of mitotic events, but their exact regulatory mechanism is not known. Recently, a Xenopus homologue, PLX1, was reported to phosphorylate and activate cdc25, leading to activation of cdc2/cyclin B. Jurkat T leukemia cells were chemically arrested and used to verify that PLK protein expression and its phosphorylation state is regulated with respect to cell cycle phase (i.e., protein is undetectable at G1/S, accumulates at S phase and is modified at G2/M). Herein, we show for the first time that endogenous human PLK protein immunoprecipitated from the G2/M-arrested Jurkat cells directly phosphorylates human cdc25C. In addition, we demonstrate that recombinant human (rh) PLK also phosphorylates rhcdc25C in a time- and concentration-dependent manner. Phosphorylation of endogenous cdc25C and recombinant cdc25C by PLK resulted in the activation of the phosphatase as assessed by dephosphorylation of cdc2/cyclin B. These data are the first to demonstrate that human PLK is capable of phosphorylating and positively regulating human cdc25C activity, allowing cdc25C to dephosphorylate inactive cdc2/cyclin B. As this event is required for cell cycle progression, we define at least one key regulatory mode of action for human PLK in the initiation of mitosis.  相似文献   

14.
J Pines  T Hunter 《Cell》1989,58(5):833-846
This paper reports the nucleotide and predicted amino acid sequence of a human B-type cyclin. The predicted protein sequence shows strong homology to the other known cyclins in the central third of the protein. We show that the level of cyclin mRNA is regulated during the cell cycle, increasing during G2 phase to four time that present in G1. The protein accumulates steadily during G2 to at least 20 times its level in G1 and is abruptly destroyed at mitosis. In G2/M phase, cyclin is associated with p34cdc2, the human homolog of the fission yeast gene cdc2+, and this complex has histone H1 kinase activity.  相似文献   

15.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

16.
Although the developmental programs of plants and animals differ, key regulatory components of their cell cycle have been conserved. Particular attention has been paid to the role of the complexes between highly conserved cyclin and cyclin-dependent kinases in regulating progression through the cell cycle. The recent demonstration that roscovitine is a potent and selective inhibitor of the animal cyclin-dependent kinases cdc2 (CDK1), CDK2 and CDK5 prompted an investigation into its effects on progression through the plant cell cycle. Roscovitine induced arrests both in late G1 and late G2 phase in BY-2 tobacco cell suspensions. Both blocks were fully reversible when roscovitine was used at concentrations similar to those used in the animal system. Stationary-phase cells subcultured in the presence of roscovitine were arrested at a 2C DNA content. This arrest was more efficient without exogenous addition of plant growth regulator. Roscovitine induced a block in G1 earlier than that induced by aphidicolin. S-phase synchronized cells treated with roscovitine were arrested at a 4C DNA content at the G2/ M transition. The expression analysis of a mitotic cyclin (NTCYC1) indicated that the roscovitine-induced G2 block probably occurs in late G2. Finally, cells in metaphase were insensitive to roscovitine. The purified CDK/cyclin kinase activities of late G1 and early M arrested cells were inhibited in vitro by roscovitine. The implications of these experimental observations for the requirement for CDK activity during progression through the plant cell cycle are discussed.  相似文献   

17.
How cyclic AMP (cAMP) could positively or negatively regulate G1 phase progression in different cell types or in cancer cells versus normal differentiated counterparts has remained an intriguing question for decades. At variance with the cAMP-dependent mitogenesis of normal thyroid epithelial cells, we show here that cAMP and cAMP-dependent protein kinase activation inhibit S-phase entry in four thyroid carcinoma cell lines that harbor a permanent activation of the Raf/ERK pathway by different oncogenes. Only in Ret/PTC1-positive TPC-1 cells did cAMP markedly inhibit the Raf/ERK cascade, leading to mTOR pathway inhibition, repression of cyclin D1 and p21 and p27 accumulation. p27 knockdown did not prevent the DNA synthesis inhibition. In the other cells, cAMP little affected these signaling cascades and levels of cyclins D or CDK inhibitors. However, cAMP differentially inhibited the pRb-kinase activity and T172-phosphorylation of CDK4 complexed to cyclin D1 or cyclin D3, whereas CDK-activating kinase activity remained unaffected. At variance with current conceptions, our studies in thyroid carcinoma cell lines and previously in normal thyrocytes identify the activating phosphorylation of CDK4 as a common target of opposite cell cycle regulations by cAMP, irrespective of its impact on classical mitogenic signaling cascades and expression of CDK4 regulatory partners.  相似文献   

18.
M phase-promoting factor (MPF) consists of a p34cdc2 (cdc2) kinase and cyclin B complex which in its active form promotes G2 to M transition. The role of MPF in G2 arrest following DNA damage, however, has remained largely uncharacterized. We have investigated whether nitrogen mustard (HN2) interfered with either the formation of MPF or its activation. For this purpose, we measured cdc2 kinase activity relative to cdc2 and cyclin B protein turnover and the phosphorylation status of cdc2. Studies were performed in two exceptional human lymphoma cell lines, which differed in HN2 sensitivity by 5-fold (CA46, 50% growth-inhibitory dose = 1.0 microM; JLP119, 50% growth-inhibitory dose = 0.2 microM) but exhibited virtually identical DNA interstrand and DNA-protein cross-link exposure. Following HN2 treatment, CA46 cells ceased to enter mitosis and exhibited a marked delay in G2 phase. Failure to enter mitosis paralleled inhibition of cdc2 kinase. Inhibition was not due to decreased levels of cdc2 or cyclin B protein; rather, G2 arrest correlated with the accumulation of both tyrosine-phosphorylated cdc2 and cyclin B. These findings implied that G2 arrest resulted from a down-regulation of the processes that activate MPF. We also found that JLP119 cells, within a few hours of mitosis at the time of drug treatment, evaded checkpoint control and continued cell division unabated by DNA damage. Furthermore, despite similar DNA cross-link exposure, JLP119 cells within the window of checkpoint control were more susceptible to S phase delay than CA46 cells. Altered cell cycle responses correlated with the greater susceptibility of JLP119 cells to the cytotoxic effects of HN2.  相似文献   

19.
Initiation of mitosis in Aspergillus nidulans requires activation of two protein kinases, p34cdc2/cyclin B and NIMA. Forced expression of NIMA, even when p34cdc2 was inactivated, promoted chromatin condensation. NIMA may therefore directly cause mitotic chromosome condensation. However, the mitosis-promoting function of NIMA is normally under control of p34cdc2/cyclin B as the active G2 form of NIMA is hyperphosphorylated and further activated by p34cdc2/cyclin B when cells initiate mitosis. To see the p34cdc2/cyclin B dependent activation of NIMA, okadaic acid had to be added to isolation buffers to prevent dephosphorylation of NIMA during isolation. Hyperphosphorylated NIMA contained the MPM-2 epitope and, in vitro, phosphorylation of NIMA by p34cdc2/cyclin B generated the MPM-2 epitope, suggesting that NIMA is phosphorylated directly by p34cdc2/cyclin B during mitotic initiation. These two kinases, which are both essential for mitotic initiation, are therefore independently activated as protein kinases during G2. Then, to initiate mitosis, we suggest that each activates the other's mitosis-promoting functions. This ensures that cells coordinately activate p34cdc2/cyclin B and NIMA to initiate mitosis only upon completion of all interphase events. Finally, we show that NIMA is regulated through the cell cycle like cyclin B, as it accumulates during G2 and is degraded only when cells traverse mitosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号