首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is to describe a new numerical-experimental method to determine the stiffness of a conceptual proximal femoral prototype. The methodology consists of the comparison of the numerical and experimental displacement distributions of the prosthesis loaded as a cantilever beam to validate a design concept: controlled stiffness prosthesis. The manufactured prototype used to test the applicability of the numerical-experimental procedure integrates a stiff metal core bonded to a composite material made of an epoxy resin reinforced with carbon-glass braided pre-forms. The prosthesis with an embedded controlled stiffness concept was obtained by varying the geometry of the core with the composite layer thickness.  相似文献   

2.
Surgical procedures for hernia surgery are usually performed using prosthetic meshes. In spite of all the improvements in these biomaterials, the perfect match between the prosthesis and the implant site has not been achieved. Thus, new designs of surgical meshes are still being developed. Previous to implantation in humans, the validity of the meshes has to be addressed, and to date experimental studies have been the gold standard in testing and validating new implants. Nevertheless, these procedures involve long periods of time and are expensive. Thus, a computational framework for the simulation of prosthesis and surgical procedures may overcome some disadvantages of the experimental methods. The computational framework includes two computational models for designing and validating the behaviour of new meshes, respectively. Firstly, the beam model, which reproduces the exact geometry of the mesh, is set to design the weave and determine the stiffness of the surgical prosthesis. However, this implies a high computational cost whereas the membrane model, defined within the framework of the large deformation hyperelasticity, is a relatively inexpensive computational tool, which also enables a prosthesis to be included in more complex geometries such as human or animal bodies.  相似文献   

3.
Running specific prostheses (RSP) are designed to replicate the spring-like behaviour of the human leg during running, by incorporating a real physical spring in the prosthesis. Leg stiffness is an important parameter in running as it is strongly related to step frequency and running economy. To be able to select a prosthesis that contributes to the required leg stiffness of the athlete, it needs to be known to what extent the behaviour of the prosthetic leg during running is dominated by the stiffness of the prosthesis or whether it can be regulated by adaptations of the residual joints. The aim of this study was to investigate whether and how athletes with an RSP could regulate leg stiffness during distance running at different step frequencies.Seven endurance runners with an unilateral transtibial amputation performed five running trials on a treadmill at a fixed speed, while different step frequencies were imposed (preferred step frequency (PSF) and −15%, −7.5%, +7.5% and +15% of PSF). Among others, step time, ground contact time, flight time, leg stiffness and joint kinetics were measured for both legs.In the intact leg, increasing step frequency was accompanied by a decrease in both contact and flight time, while in the prosthetic leg contact time remained constant and only flight time decreased. In accordance, leg stiffness increased in the intact leg, but not in the prosthetic leg. Although a substantial contribution of the residual leg to total leg stiffness was observed, this contribution did not change considerably with changing step frequency.Amputee athletes do not seem to be able to alter prosthetic leg stiffness to regulate step frequency during running. This invariant behaviour indicates that RSP stiffness has a large effect on total leg stiffness and therefore can have an important influence on running performance. Nevertheless, since prosthetic leg stiffness was considerably lower than stiffness of the RSP, compliance of the residual leg should not be ignored when selecting RSP stiffness.  相似文献   

4.
A diabetic man with erectile dysfunction in whom two previous attempts at penile prosthesis implantation had failed was treated by using an iliac bone flap as a penile stiffener. The patient had satisfactory sexual function with his penis; it retained its size and stiffness during the 1-year follow-up period. We recommend this method for use in patients in whom multiple earlier attempts at penile prosthesis implantation were unsuccessful.  相似文献   

5.
The Terry Fox jogging (TFJ) prosthesis was developed at Chedoke-McMaster Hospital to alleviate the asymmetric jogging pattern experienced by above-knee amputees when attempting to jog with conventional walking prostheses. This prosthesis features a spring-loaded, telescoping shank designed to eliminate any vaulting action and control the trunk motion during stance. The spring is intended to attenuate the impact forces and release its stored energy at push-off to provide momentum transfer to the jogger. This prosthesis was comprehensively assessed in the gait laboratory, by evaluating the kinematics, energy and power flow patterns of an above-knee amputee jogger wearing the TFJ prosthesis. Included in the assessment is the ability of the prosthesis to satisfy a set of relevant design criteria that have been established from non-amputee jogging patterns. An increased swing phase time for the prosthetic limb and the need to have the knee hyperextended throughout the stance phase contributed to an asymmetric jogging style. The telescoping action did lower the amputee's centre of mass, thereby reducing the vaulting effect. However, the spring only imparted a lifting action to the jogger and the ground reaction forces were double those of a non-amputee jogger. These findings clearly indicate a need to redesign the TFJ prosthesis and are being incorporated in the design of a new physiological jogging prosthesis.  相似文献   

6.
The adaptation of bone around intramedullary fixated prostheses, such as the femoral component of the hip joint or the radial component of the elbow joint, is well documented in follow-up studies. Bone adaptation takes the form of proximal bone atrophy accompanied, in some cases, by distal bone hypertrophy. A mechanistic model has been formulated to predict bone adaptation based on the concept that the continuous processes of damage and repair regulate bone adaptation. We apply the model to investigate the significance of two features of intramedullary prosthesis design on bone adaptation: prosthesis Young's modulus and the presence of a prosthesis collar. Results, as well as indicating some characteristics of accumulative-damage stimulated bone adaptation, predict that a low Young's modulus stem will very much reduce the extent of bone loss whereas the presence of a collar will have no significant effect. The results predict that a collarless low stiffness prosthesis is one possible approach for improving the secondary stability of intramedullary-fixated orthopaedic implants.  相似文献   

7.
With particular interest on total hip arthroplasty (THA), optimization of orthopedic prostheses is employed in this work to minimize the probability of implant failure or maximize prosthesis reliability. This goal is often identified with the reduction of stress concentrations at the interface between bone and these devices. However, aseptic loosening of the implant is mainly influenced by bone resorption phenomena revealed in some regions of the femur when a prosthesis is introduced. As a consequence, bone resorption appears due to stress shielding, that is to say the decrease of the stress level in the implanted femur caused by the significant load carrying of the prosthesis due to its higher stiffness. A maximum stiffness topological optimization-based (TO) strategy is utilized for non-linear static finite element (FE) analyses of the femur–implant assembly, with the goal of reducing stress shielding in the femur and to furnish guidelines for re-designing hip prostheses. This is accomplished by employing an extreme accuracy for both the three-dimensional reconstruction of the femur geometry and the material properties maps assigned as explicit functions of the local densities.  相似文献   

8.
Although athletes with unilateral below-the-knee amputations (BKAs) generally use their affected leg, including their prosthesis, as their take-off leg for the long jump, little is known about the spring-like leg behavior and stiffness regulation of the affected leg. The purpose of this study was to investigate vertical stiffness during one-legged hopping in an elite-level long jump athlete with a unilateral BKA. We used the spring-mass model to calculate vertical stiffness, which equals the ratio of maximum vertical ground reaction force to maximum center of mass displacement, while the athlete with a BKA hopped on one leg at a range of frequencies. Then, we compared the vertical stiffness of this athlete to seven non-amputee elite-level long-jumpers. We found that from 1.8 to 3.4 Hz, the vertical stiffness of the unaffected leg for an athlete with a BKA increases with faster hopping frequencies, but the vertical stiffness of the affected leg remains nearly constant across frequencies. The athlete with a BKA attained the desired hopping frequencies at 2.2 and 2.6 Hz, but was unable to match the lowest (1.8 Hz) and two highest frequencies (3.0 and 3.4 Hz) using his affected leg. We also found that at 2.5 Hz, unaffected leg vertical stiffness was 15% greater than affected leg vertical stiffness, and the vertical stiffness of non-amputee long-jumpers was 32% greater than the affected leg vertical stiffness of an athlete with a BKA. The results of the present study suggest that the vertical stiffness regulation strategy of an athlete with a unilateral BKA is not the same in the unaffected versus affected legs, and compared to non-amputees.  相似文献   

9.
10.
Translational stiffness of the replaced shoulder joint   总被引:4,自引:0,他引:4  
Results after a total shoulder arthroplasty in rheumatoid patients are poor, indicated by loosening of especially the glenoid component, bad joint functionality and the possibility of a joint dislocation. The failure mechanisms behind this are multiple, including patient, surgical and design factors. These results must be improved. At present, the optimal geometrical prosthesis component design, focused on joint conformity and constraint, still has to be investigated.

Proper understanding of the effect of geometrical design parameters on the theoretical relationship between joint translations and joint forces may contribute to improved designs. The main objective of this study is to theoretically describe this relationship and to investigate the joint translational stiffness, which can be used to investigate the effect of design parameters on joint motion. Joint translational stiffness is the gradient of the subluxation force with respect to the humeral head displacement.

For this static analysis a potential field is introduced, as the result of a joint compressive force (muscle forces) and a subluxation force (external forces). The positive and negative stiffness during articulation inside and subluxation outside the glenoid cavity, lead to stable and unstable equilibrium joint positions, respectively. A most lateral position of the humeral head centre coincides with a zero subluxation force; at this position the humerus is dislocated and a restoring force is needed to relocate the humeral head.

Joint conformity and compression force influence the joint translational stiffness during articulation inside the glenoid cavity, whereas during articulating outside the glenoid cavity this is influenced by the joint compression force and humeral radius of curvature. The glenoid radius of curvature influences the contact point and, in combination with the glenoid superior–inferior chord length, it also influences the constraintness angle, which influences the maximum allowable subluxation load to prevent a joint dislocation. This constraintness angle together with the joint conformity also influences maximum joint translations before articulation outside the glenoid cavity. Furthermore, the sign of the joint translational stiffness determines the stability of shoulder motion, which is stable and unstable if this stiffness is positive and negative, respectively.  相似文献   


11.
Transverse plane shear stress between the prosthetic socket and residual limb often results in soft tissue breakdown and discomfort for individuals with lower-limb amputation. To better understand the effects of reduced transverse plane stiffness in the shank of a prosthesis, a second-generation variable stiffness torsion adapter (VSTA II) was tested with individuals with a transtibial amputation (n = 10). Peak transverse plane moments, VSTA II deflection, range of whole body angular momentum (WBAM), ground reaction impulse, joint work, and personal stiffness preference were evaluated at three fixed stiffness levels (compliant: 0.25 Nm/°, intermediate: 0.75 Nm/°, stiff: 1.25 Nm/°) at three walking speeds (self-selected, fast and slow: +/− 20% of self-selected, respectively) while straight-line walking and performing left and right turns. Residual limb loading decreased and VSTA II displacement increased for reductions in stiffness and both metrics increased with increasing walking speed, while ground reaction impulse and joint work were unaffected. The range of WBAM increased with decreased stiffness, which suggests an increased risk of falling when using the VSTA II at lower stiffness settings. Preference testing showed no significant result, but trends for lower stiffness settings when turning and walking at self-selected speeds were noted, as were stiffer settings when walking straight and at faster speeds. These results show that a device with rotational compliance like the VSTA II could reduce loading on the residual limb during straight walking and turning activities and that factors such as walking speed, activity type and user preference can affect the conditions for optimal use.  相似文献   

12.
13.
由植入物界面处的相互作用可能引起无菌性松动和假体周围感染。而无菌性松动和假体周围感染仍然是一个难以治疗的问题,并且最终可能导致假体植入失败,引起严重后果。理想的植入物应能促进骨整合,防止细菌粘附,减少细菌感染。骨科植入技术主要基于生物材料的开发和使用,随着材料科学和细胞生物学的发展,已可以用新的植入物表面涂层的进展来解决这些问题。本文回顾总结了时下骨科常见的假体涂层设计和相关问题,以期为进一步研究提供借鉴。  相似文献   

14.
15.
A computational model for exploring the design of a voice-producing voice prosthesis, or voice-producing element (VPE), is presented. The VPE is intended for use by laryngectomized patients who cannot benefit from current speech rehabilitation techniques. Previous experiments have focused on the design of a double-membrane voice generator as a VPE. For optimization studies, a numerical model has been developed. The numerical model introduced incorporates the finite element (FE) method to solve for the flow-induced vibrations of the VPE system, including airflow coupled with a mass-loaded membrane. The FE model includes distinct but coupled fluid and solid domains. The flow solver is governed by the incompressible, laminar, unsteady Navier–Stokes equations. The solid solver allows for large deformation, large strain, and collision. It is first shown that the model satisfactorily represents previously published experimental results in terms of frequency and flow rate, enabling the model for use as a design tool. The model is then used to study the influence of geometric scaling, membrane thickness, membrane stiffness, and slightly convergent or divergent channel geometry on the model response. It is shown that physiological allowable changes in the latter three device parameters alone will not be sufficient to generate the desired reduction in fundamental frequency. However, their effects are quantified and it is shown that membrane stiffness and included angle should be considered in future designs.  相似文献   

16.
目的:探讨一种新型的适合于儿童的非骨水泥固定型股骨柄设计特征,并通过随访获得其临床效果。方法:选取2010年9月~2013年4月在我科植入新型非骨水泥股骨柄的6名儿童患者,其中男1例,女5例;年龄8.5±3.2岁(5~11岁)。病理诊断结果骨肉瘤患者5例,恶性神经鞘瘤患者1例;右股骨下端患者5例,左股骨下端患者1例;其中一例患者术前有病理骨折。6例患者在我科行双动半膝关节置换术,其中股骨下端均采用了新型非骨水泥假体柄。采用Enneking骨肌肉肿瘤置换后下肢功能评定标准对患肢行功能评价,影像学重点评估股骨柄在髓腔放置位置是否得当、股骨柄假体有无松动、有无应力遮挡、骨溶解等现象,并测量术后患者患肢短缩畸形数据。结果:6例患者随访时间32个月(14~54个月),除1例5岁女童术前肢体条件较差在术后14个月行膝关节融合手术,其余无翻修病例,置换关节均无感染、折断等现象。MSTS评分21.33分;射线片示所有患者股骨髓腔内假体柄放置位置满意,股骨侧及胫腓骨侧假体周围未见骨溶解。结论:新型非骨水泥固定型股骨柄设计合理,早期稳定性可,后期可取得满意的生物固定效果。  相似文献   

17.
Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system, Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining biomechanical issues such as considerable bone loss around the stem and peri-prosthetic bone fractures are present. To overcome these limiting issues a new concept of the direct intramedullary fixation was developed. We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling by restoring the natural load transfer in the femur. Generic CT-based finite element models of an intact femur and amputated bones implanted with 3 analyzed implants were created and loaded with a normal walking and a forward fall load. The strain adaptive bone remodeling theory was used to predict long-term bone changes around the implants and the periprosthetic bone failure risk was evaluated by the von Mises stress criterion. The results show that the new design provides close to physiological distribution of stresses in the bone and lower bone failure risk for the normal walking as compared to the OPRA and the ISP implants. The bone remodeling simulations did not reveal any overall bone loss around the new design, as opposed to the OPRA and the ISP implants, which induce considerable bone loss in the distal end of the femur. This positive outcome shows that the presented concept has a potential to considerably improve safety of the rehabilitation with the direct fixation implants.  相似文献   

18.
Studies are being conducted in our laboratory to test the concept of introducing an elastomer to attenuate and damp forces applied to the bone interface in a major weightbearing joint replacement prosthesis. An analogue of a fully constrained intramedullary stem type prosthesis has been developed in a segmental femoral replacement prosthesis of the dog. The layer of silastic was introduced to damp forces at the bone-prosthesis interface. This paper describes the response of this elastomer prosthesis to torsional and bending loads, and defines the upper limits of elastomer strain. The low modulus silastic displayed surprisingly low strain for applied loads, particularly in bending tests, in this prosthetic configuration. The results of these mechanical studies serve as a bench mark for the eventual design and material selection of an elastomer for human prosthetic use.  相似文献   

19.
While total knee replacement is successful, hemiarthroplasty is necessary for some young, obese and active patients who are especially not suitable for unicompartmental or total knee prostheses. Hemiarthroplasty also provides an opportunity for children with bone tumors. The design ofhemiarthroplasty should be patient-specific to reduce contact stress and friction as well as instability, compared to conventional hemi-knee prosthesis. A novel bipolar hemi-knee prosthesis with two flexion stages was developed according to a healthy male's knee morphological profile. The motion mode of the bipolar hemi-knee prosthesis was observed through roentgenoscopy in vitro experiment. The biomechanical properties in one gait cycle were evaluated though finite element simulation. The bipolar hemi-knee prosthesis was found to produce knee flexion at two stages through X-ray images. The first stage is the motion from upright posture to a specified 60~ flexion, followed by the second stage of motion subsequently to deep flexion. The finite element simulation results also show that the designed hemi-knee prosthesis has the ability to reduce stresses on the joint contact surfaces. Therefore, it is possible for the bipolar hemi-knee prosthesis to provide better biotribological performances because it can reduce stresses and potentially wear on the opposing contacting surface during a gait cycle, orovidin~ a t~romisin~ treatment strate~v in future Joint renair znd renlneement  相似文献   

20.
Morsellised bone impaction is used in joint prosthesis revision surgery to repair structural damage to the periarticular bone stock. The initial stiffness of the impacted bone is crucial for the survival of the revised hip joint. Impaction of morsellised bone in a femoral canal can cause fractures that may induce implant loosening in both femur and acetabulum. Alternative techniques to increase stiffness can therefore be of major interest. In this study we analyse whether applying a constant pressure during impaction can increase the stiffness of the morsellised bone. We constructed bone pellets by impaction with and without applying a constant pressure. The constrained stiffness and coefficient of secondary strain were determined by unidirectional load testing after construction of the pellets. A significant increase in constrained stiffness (P < 0.001) from 3.9 to 5.5 MPa and a decrease in the coefficient of secondary strain (P < 0.001) from 1.1 to 0.5 were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号