共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the Number of Primary Sensory Neurons in Normal and Vitamin-E-Deficient Rats during Aging
《Somatosensory & motor research》2013,30(3-4):317-327
In the dorsal root ganglia (DRGs) of vitamin-E-deficient rats, we previously found an increase in the number of neurons during the first 5 months of life (Cecchini et al., 1993, 1994). This neurogenetic event seems to bring forward in time the increase in the number of primary sensory neurons that Devor et al. (1985) found in normal rats aged more than 1 year, but that other authors have not confirmed. The present study had two aims: first, to verify whether neurogenesis spontaneously occurs in DRGs of 14-month-old Sprague-Dawley rats; and, second, to determine whether the neurogenesis enhanced by vitamin E deficiency continues further in the long run, or whether it stops or reverses into neuron loss.A quantitative and morphometric analysis was performed on neurons of L3-L6 DRGs in 14-month-old normal and vitamin-E-deficient rats: the results obtained were compared to those previously obtained in 1-month-old and 5-month-old animals of both dietetic treatment groups, in order to observe the effects of aging on these neuronal populations. The total number of DRG neurons in the control group was higher in older than in younger animals, whereas the value in the vitamin-E-deficient group was lower in older than in younger animals. The present data confirm that neurogenesis occurs in DRGs of normal rats during adult life. Moreover, they show that once the premature neurogenesis in the deficient rats is completed, no further increase in the number of neurons takes place. 相似文献
2.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons. 相似文献
3.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc. 相似文献
4.
5.
背根神经节(dorsal root ganglia,DRG)是重要的外周神经系统组成部分,是外周感觉传入中枢的枢纽。背根神经节在发育过程中神经元细胞及其基因表达的动态变化已有研究进行过单细胞转录组的解析,而关于非神经元细胞的动态变化尚无系统研究。为了探究出生后不同发育时间点大鼠DRG内非神经元细胞的变化,本研究选取10只7日龄(7 day,7D)大鼠的DRG和3只3月龄(3 month,3M)大鼠的DRG,制备单细胞悬液,使用10×Genomics平台进行测序,从单细胞水平解析了出生后发育中DRG非神经元细胞的转录图谱。结果表明,7D和3M各类非神经元细胞在细胞数目的分布比例上存在显著差异性。对拥有4个亚型的施旺细胞整体进行拟时分析,Ⅱ型施旺细胞是最早出现的施旺细胞亚型,Ⅲ型和Ⅳ型施旺细胞出现较晚。进一步对2个不同发育时间点细胞占比数差异显著的Ⅳ型施旺细胞进行了基因本体(gene ontology,GO)和京都基因与基因组百科全书(Kyoto encylopaedia of genes and genomes,KEGG)通路富集分析。从7D到3M的差异基因的GO分析结果表明,Ⅳ型施旺细胞的状态逐渐趋于稳定。KEGG分析结果发现酪氨酸代谢通路的显著上调影响了细胞内的信号转导,进而影响了细胞稳态的维持。从7D到3M,基因Col3a1、Col4a1显著下调,且与细胞外基质的构建密切相关,这表明Ⅳ型施旺细胞的细胞基质环境随着发育过程趋于稳定。上述结果提示Ⅳ型施旺细胞是一类趋于成熟且维持施旺细胞稳态的细胞。本研究关于DRG在发育过程中细胞类型和基因表达差异的分析结果为躯体感觉在发育过程中成熟机制的研究提供了重要参考信息。 相似文献
6.
H Arslan A Aktaş E Elibol OBB Esener AP Türkmen KK Yurt 《Biotechnic & histochemistry》2016,91(4):277-282
Diclofenac sodium (DS) is used primarily to treat fever and to alleviate pain and inflammation. We investigated the effects of DS exposure during gestation on the testes of rat pups to investigate the safety of its use during the prenatal period. Pregnant rats were separated into control, saline, low dose, medium dose and high dose groups. DS was given between weeks 15 and 21 of gestation. Total numbers of spermatogonia and Sertoli cells were counted in the testes of 7-day-old male rats using the physical disector method. By the end of the study, the total number of Sertoli cells was decreased significantly in a dose dependent manner in the medium and high dose groups compared to controls. No significant differences were found in the total number of spermatogonia in the control, saline and low dose DS groups. Medium and high dose DS administration reduced the total number of spermatogonia compared to other groups. We suggest that prenatal administration of DS can cause deleterious effects on the testis development, especially in high doses. 相似文献
7.
The cell body or soma in the dosal root ganglion (DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons. In a rat model of radicular pain, an intraforaminal implantation of a rod that chronically compressed the lumbar DRG ("CCD" model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accom-panied by hyperalgesia in the ipsilateral hind paw. By the 5th day after onset of CCD, there was a novel upregulation in neuronal expression of the chemokine, monocyte chemoattractant protein-1 (MCP- 1 or CCL2) and also its receptor, CCR2. The neurons developed, in response to topically applied MCP-1, an excitatory response that they normally do not have. CCD also activated non-neuronal cells including, for example, the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days. A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue. The release of ligands such as CCL2, in addition to possibly activating nociceptive neurons (maintaining the pain), may also act to preserve injured cells in the face of ischemia and hypoxia, for example, by promoting angiogenesis. Thus, somal hyperexcitability, as often said of inflammation, may represent a double edged sword. 相似文献
8.
Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25–30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons. © 1995 John Wiley & Sons, Inc. 相似文献
9.
蟾蜍离体脊神经节神经元对其外周突与中枢突重复刺激的反应 总被引:5,自引:0,他引:5
本工作用细胞内记录技术记录了18个蟾蜍离体背根节神经元对其外周突与中枢突刺激的反应。1-2Hz刺激背根和坐骨神经引起的背根节细胞的动作电位参数相同。随着刺激频率增高,30%的细胞对背根和坐骨神经刺激同步地发生动作电位振幅降低、波形分解和脱失;70%的细胞也产生不同程度的变化。背根节细胞对背根和坐骨神经重复刺激不能跟随的频率分别平均为126 Hz和323Hz。结果表明,本工作所记录的背根节细胞为A型神经元,其中枢突的直径小于外周突。对上述变化的可能机制,文中也做了讨论。 相似文献
10.
慢性压迫大鼠背根神经节(chronic compression of the dorsal root,ganglion,CCD)后,背根神经节细胞兴奋性升高,但引起神经元兴奋性改变的离子通道机制还需进一步探索。本实验采用胞内记录以及全细胞膜片钳记录方法,研究急性分离的大鼠背根神经节细胞兴奋性改变与瞬时外向钾电流(A-type potassium current,ⅠA)的关系。结果表明,CCD术后背根神经节细胞兴奋性升高,在急性分离的体外细胞中仍继续存在,表现为对辣椒素敏感的背根神经节细胞产生动作电位的最小电流刺激强度,即阈电流(current threshold)及阈电位(voltage threshold)降低;给予正常对照组神经元(未压迫损伤)瞬时外向钾通道阻断剂4-氨基吡啶,出现了类似CCD术后兴奋性升高的改变。进一步用两步电压钳方法分离ⅠA,研究CCD术后神经元ⅠA的变化,结果表明,CCD组神经元的ⅠA比对照组神经元ⅠA降低,并且与其阈电位的改变一致。以上结果提示,背根神经节压迫受损后,神经节细胞ⅠA降低可能参与介导了神经节细胞兴奋性的升高。 相似文献
11.
TachykininfamilyisagroupofneuropeptideswithsimilarCterminalsequencesandrelatedbioactivities.ThemajortachykininsinmammalianaresubstanceP(SP),neurokininA(NKA)andneurokininB(NKB).Correspondingtothesepeptides,threedistincttachykininreceptorswerediscoveredandn… 相似文献
12.
Bo Pang Ling Qiao Shaoxin Wang Xin Guo Yun Xie Liping Han 《Cell biology international》2021,45(11):2294-2303
This study aimed to investigate the functions of miR-214-3p in diabetic neuropathic rodents. The diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (STZ) in rats, and miR-214-3p was delivered via tail vein injection of lentivirus. Hot or cold stimulus tests demonstrated that STZ induced thermal hyperalgesia. Neurophysiological measurements revealed that motor and sensory nerve conduction velocity and nerve blood flow were decreased in diabetic neuropathic rats. However, the STZ-induced hyperalgesia, and reduced nerve conduction velocity and nerve blood flow were all significantly reversed by miR-214-3p administration. HE staining, TUNEL, ELISA, and immunoblotting demonstrated that STZ led to obvious pathological lesion, cell apoptosis, and inflammation in dorsal root ganglion (DRG), evidenced by altered levels of apoptosis-related protein molecules and inflammatory factors, and activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88/nuclear factor kappa B signaling. The pathological alterations in diabetic neuropathic rats in DRG were significantly ameliorated by miR-214-3p application. In addition, sodium channel protein type 3 subunit alpha isoform 1 (Nav1.3) and TLR4 were identified as targets of miR-214-3p via dual-luciferase reporter assay. MiR-214-3p may play its roles by downregulating Nav1.3 and TLR4. In summary, miR-214-3p alleviated diabetes-induced nerve injury, and pathological lesion, cell apoptosis, and inflammation in DRG by regulating Nav1.3 and TLR4 in STZ-induced rats. These findings may provide novel therapeutic targets for clinical treatment of diabetic neuropathy. 相似文献
13.
We studied the voltage- and use-dependent action of pyrrolo-imidazole derivative, D57, on sodium currents in different dorsal root ganglion neurons of rats. At the level of 50% of maximum tonic block, which corresponded to a concentration of 0.44 mM, the use-dependent block of tetrodotoxin resistant (TTXr) sodium currents reached 59 ± 12% of the remaining currents when neurons were stimulated by 6-msec-long impulses up to -10 mV with a 20 sec-1 frequency, whereas for TTX sensitive (TTXs) currents this value was equal to 38 ± 9%. This block was dependent on the holding potential, and for cells with only TTXr currents the dependence was shifted to more positive potentials compared with that for neurons with only TTXs currents or with both of them. 相似文献
14.
15.
16.
催产素对大鼠背根神经节分离细胞GABA激活电流的调制作用 总被引:8,自引:0,他引:8
在急性分离的大鼠背根神经节(dorsal root ganglion,DRG)细胞上,应用全细胞膜片箝技术观察了预知催产素(oxytocin,OT)对GABA激活电流的调制作用。结果如下:(1)大多数细胞(48/52,90.5%)对GABA敏感。(2)OT可引起51.3%(20/39)的受检细胞出现外向膜电流;43.6%(17/39)无明显膜反应;5.1%(2/39)出现内向膜电流。(3)预加OT 相似文献
17.
Neal R. Melvin Robert J. Sutherland 《The journal of histochemistry and cytochemistry》2010,58(7):577-584
Immunohistochemistry is a ubiquitous technique in histology. Often, the goal of such studies is the quantification of some parameter associated with a particular antigen. When used correctly, the optical disector offers a statistically relevant approach to achieve this goal without bias from cell size, shape, or orientation. This three-dimensional counting probe is virtually embedded within the depth of the tissue section, thus avoiding sampling near the cut surfaces of the section, where cells are often lost during the cutting and subsequent processing steps. It follows that the probability that a cell could be immunolabeled should be equal throughout the section depth to correctly employ the optical disector. In this report, we demonstrate that parameters commonly used in immunohistochemistry often leave the middle of the section unlabeled. Furthermore, the degree of incomplete penetration varies among antibodies but can be overcome in some cases by extending the incubation time of the secondary antibody. The detection of this phenomenon in immunofluorescence preparations and the implications of these findings for quantitative stereology using the optical disector are discussed. (J Histochem Cytochem 58:577–584, 2010) 相似文献
18.
Zipora Kra-Oz Gad Spira Yoram Palti Hamutal Meiri 《The Journal of membrane biology》1992,129(2):189-198
Summary Three synthetic peptides corresponding to parts of S4 of the first repeat of eel electroplax sodium channel were synthesized. The basic peptide was C1+which corresponds to amino acids 210–223 (eel channel numbering) and two subfractions: an external fraction, C1ex+(amino acid 210–217); and an internal part, C1in+(amino acid 218–221). Peptide C1+includes four of the charged amino acids of this domain; peptide C1ex+includes three of the charged amino acids and is closer to the external membrane surface (according to channel models) than peptide C1in+which includes the fourth charged amino acid alone.Antibodies generated in rabbits against these peptides were shown to be site specific. Using the whole-cell patch-clamp technique, we found that in rat dorsal root ganglion (DRG) cells, the antibodies against C1in+but not against C1ex+had an effect on the gating parameters. They shifted the Na-channel inactivation curve towards hyperpolarization and decreased the slope of the Na-channel activation curve. These results demonstrate that during the conformational changes associated with channel gating, the fourth charged amino acid of S4 must be accessible to antibodies given to the external solution. Furthermore, they indicate a specific involvement of S4 in the voltage dependency of the gating processes.This study was supported by a basic research grant of The Israel Academy of Sciences and Humanities (#430.87 to H.M. and G.S.).We wish to express our gratitude to Dr. M. Tosteson (Harvard Medical School) for providing us with samples of peptide S4IV to use in the ELISA assays. We thank Dr. R. Gordon (The Max Planck Institute for Biophysics, Frankfurt) for immunochemical advise and protocols. The advice of Drs. M. Sammar, M. Paizi, R. Schatzberger, I. Zeitoun and Y. Mika (Technion) was very useful. We thank Mrs. A. Schwartz (Technion) for participating in the experiments. 相似文献
19.
20.
Neuronal differentiation involves specific molecular and morphological changes in precursors and results in mature, postmitotic neurons. The expression of neuron-specific β tubulin, as detected by the monoclonal antibody TuJ1, begins during the period of neurogenesis. Indeed, TuJ1 expression precedes that of the 160 kD neurofilament protein in both the central and peripheral nervous systems. In the embryonic rat spinal cord, bipolar cells and some mitotic cells in the ventricular zone were TuJ1 immunoreactive (IR). Sensory ganglia also contained cells with TuJ1-IR mitotic spindles in situ. In embryonic rat sensory and sympathetic ganglion cell cultures pulsed with the thymidine analog bromodeoxyuridine (BrdU), TuJ1 label was detected in the spindle of mitotic cells and in the midbody of cells joined at cytokinesis, indicating that neuron-specific tubulin expression was initiated during or before the final mitosis of neuronal progenitors. Dorsal root ganglion cultures included TuJ1-IR cells with several shapes that may reflect morphological transitions, from flattened stellate neural crest-like cells to differentiated bipolar neurons. Indeed, the presence of flattened TuJ1-IR cells was correlated with neurogenesis. Some sympathetic neuron precursors possessed long TuJ1-IR neurites, as well as TuJ1-IR spindle microtubules and BrdU-labeled chromosomes, indicating that these precursors can possess long processes during metaphase. These results support the hypothesis that neuron-specific tubulin expression represents an early molecular event in neuronal differentiation exhibited by a wide range of neuronal precursors. The cessation of proliferation can occur at different points during neuronal differentiation, as TuJ1-IR was detected in cells undergoing mitosis. Future studies directed toward understanding the molecules that initiate neuron-specific tubulin expression may lead to the factors that control the initial phases of neuronal differentiation. © 1995 John Wiley & Sons, Inc. 相似文献