首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

2.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

3.
p27Kip1 regulates T cell proliferation   总被引:6,自引:0,他引:6  
Our studies addressed the mechanism by which serum acts in conjunction with T cell receptor (TCR) agonists to promote the proliferation of primary splenic T cells. When added to resting splenocytes, TCR agonists initiated G(0)/G(1) traverse and activated cyclin D3-cdk6 complexes in a serum-independent manner. On the other hand, both TCR agonists and 10% serum were required for the activation of cyclin E-cdk2 and cyclin A-cdk2 complexes and the entry of cells into S phase. Serum facilitated cdk2 activation by maximizing the extent and extending the duration of the TCR-initiated down-regulation of the cdk2 inhibitor, p27(Kip1). Although p27(Kip1) levels were reduced (albeit submaximally) in cells stimulated in serum-deficient medium, nearly all of the cdk2 complexes in these cells contained p27(Kip1). In contrast, in cells receiving TCR agonist and 10% serum, little if any p27(Kip1) was present in cyclin-cdk2 complexes. Unlike wild-type splenocytes, p27(Kip1)-null splenocytes did not require serum for cdk2 activation or S phase entry whereas loss of the related cdk2 inhibitor, p21(Cip1), did not override the serum dependence of these responses. We also found that cdk2 activation was both necessary and sufficient for maximal expression of cdk2 protein. These studies provide a mechanistic basis for the serum dependence of T cell mitogenesis.  相似文献   

4.
Medulloblastoma, a brain tumor arising in the cerebellum, is the most common solid childhood malignancy. The current standard of care for medulloblastoma leaves survivors with life-long side effects. Gaining insight into mechanisms regulating transformation of medulloblastoma cells-of-origin may lead to development of better treatments for these tumors. Cerebellar granule neuron precursors (CGNPs) are proposed cells-of-origin for certain classes of medulloblastoma, specifically those marked by aberrant Sonic hedgehog (Shh) signaling pathway activation. CGNPs require signaling by Shh for proliferation during brain development. In mitogen-stimulated cells, nuclear localized cyclin dependent kinase (cdk) inhibitor p27 (Kip1) functions as a checkpoint control at the G1- to S-phase transition by inhibiting cdk2. Recent studies have suggested cytoplasmically localized p27kip1 acquires oncogenic functions. Here, we show that p27Kip1 is cytoplasmically localized in CGNPs and mouse Shh-mediated medulloblastomas. Tranasgenic mice bearing an activating mutation in the Shh pathway and lacking one or both p27Kip1 alleles have accelerated tumor incidence compared to mice bearing both p27Kip1 alleles. Interestingly, mice heterozygous for p27Kip1 have decreased survival latency compared to p27Kip1-null animals. Our data indicate that this may reflect the requirement for at least one copy of p27Kip1 for recruiting cyclin D/cdk4/6 to promote cell cycle progression yet insufficient expression in the heterozygous or null state to inhibit cyclin E/cdk2. Finally, we find that mis-localized p27Kip1 may play a positive role in motility in medulloblastoma cells. Together, our data indicate that the dosage of p27Kip1 plays a role in cell cycle progression and tumor suppression in Shh-mediated medulloblastoma expansion.  相似文献   

5.
p27(Kip1) associates with cyclin/cdk complexes and inhibiting cdk activity, and overexpression of p27(Kip1) induces G1 arrest. We found that p27(Kip1) overexpression inhibits cdk2 kinase activity, but not cdk6 kinase activity in HeLa cells. The amount of p27(Kip1) associated with cdk2 was significantly higher than that associated with cdk6. cdk6 complexes contained detectable amounts of p27(Kip1) in all human cell lines examined, except in HeLa cells where p27(Kip1) preferentially associated with cdk2. It appears that in HeLa cells overexpressed p27(Kip1) fails to inhibit cdk6 kinase activity because of low binding affinity of cdk6 to p27(Kip1). The low binding affinity is due to a low level of the cdk6/cyclin D complexes. Functional inactivation of pRb has an effect on p27(Kip1) association with cdk6/cyclin D complexes.  相似文献   

6.
Elucidating the factors that inhibit the increase in airway smooth muscle (ASM) mass may be of therapeutic benefit in asthma. Here, we investigated whether interferon-gamma (IFN-gamma), a potent inducer of growth arrest in various cell types, regulates mitogen-induced ASM cell proliferation. IFN-gamma (1-100 U/ml) was found to markedly decrease both DNA synthesis and ASM cell number induced by the mitogens epidermal growth factor (EGF) and thrombin. Interestingly, IFN-gamma had no effect on mitogen-induced activation of three major mitogenic signaling pathways, phosphatidylinositol 3-kinase, p70(S6k), or mitogen-activated protein kinases. Mitogen-induced expression of cell cycle regulator cyclin D1 was increased by IFN-gamma, whereas no effect was observed on degradation of p27(Kip1). Expression array analysis of 23 cell cycle-related genes showed that IFN-gamma inhibited EGF-induced increases in E2F-1 expression, whereas induction of c-myc, cyclin D2, Egr-1, and mdm2 were unaffected. Induction of E2F-1 protein and Rb hyperphosphorylation after mitogen stimulation was also suppressed by IFN-gamma. In addition, IFN-gamma decreased activation of cdk2 and expression of cyclin E, upstream signaling molecules responsible for Rb hyperphosphorylation in the late G1 phase. IFN-gamma also increased levels of IFI 16 protein, whose mouse homolog p202 has been associated with growth inhibition. Together, our data indicate that IFN-gamma is an effective inhibitor of ASM cell proliferation by blocking transition from G1-to-S phase by acting at two different levels: modulation of cdk2/cyclin E activation and inhibition of E2F-1 gene expression.  相似文献   

7.
Cyclin-dependent kinases (cdks) are a family of proteins whose function plays a critical role in cell cycle traverse. Transforming growth factor-β1 (TGF-β1) is a potent growth inhibitor of epithelial cells. Since cdks have been suggested as possible biochemical markers for TGF-β growth inhibition, we investigated the effect of TGF-β1 on cdc2 and cdk2 in a normal mouse mammary epithelial cell line (MME) and a TGF-β-resistant MME cell line (BG18.2). TGF-β1 decreases newly synthesized cdc2 protein levels within 6 h after addition. Coincident with this decrease in newly synthesized cdc2 protein was a marked reduction in its ability to phosphorylate histone H1. This decrease in kinase activity is not due to a change in steady-state levels of cdc2 protein, since mRNA and total protein levels of cdc2 are not reduced until 12 h after TGF-β1 addition. This suggests that the kinase activity of cdc2 is dependent on newly synthesized cdc2 protien. Moreover, the protein synthesis of another cyclin-dependent kinase, cdk2, is not effected by TGF-β1 addition, but its kinase activity is substantially reduced. Thus, it appears that TGF-β decreases the kinase activity of both cdc2 and cdk2 by distinct mechanisms.  相似文献   

8.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27Kip1 and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21CIP1/Waf1 proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor β (RARβ) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16Ink4A, p15Ink4B, p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin–Cdk complexes showed that RA increases p27Kip1 expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27Kip1. These results suggest that increases in the levels of p27Kip1 and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

9.
Transforming growth factor β1 (TGFβ1) inhibits epithelial cell proliferation late in the G1 phase of the cell cycle. We examined the effect of TGFβ1 on known late G1 cell cycle regulators in an attempt to determine the molecular mechanism of growth inhibition by this physiological inhibitor. The results demonstrate the TGFβ1 inhibits the late G1 and S phase specific histone H1 kinase activity of p33cdk2. This inhibitiion is not dur to TGFβ1's effect on p33cdk2 synthesis, but rather due to its negative effect on the late G1 phosphorylation of p33cdk2. It is also shown that TGFβ1 inhibits both late G1 cyclin A and cyclin E associated histon H1 kinase activities. The inhibitor has no effects on the synthesis of cyclin E but to inhibit the synthesis of cyclin A protein in a cell cycle dependent manner. If TGFβ1 is added to cells which have progressed futher than 8 hours into G1, then it is without inhibitory effect on cyclin A synthesis. These effect on TGFβ1 on late G1 cell cycle regulators correlate well with its inhibitory effects on cellular growth and suggest that these G1 cyclin dependent kinases might serve as targets for TGFβ1-mediated growth arrest.  相似文献   

10.
The Kaposi's sarcoma-associated human herpesvirus 8 (KSHV/HHV8) encodes a protein similar to cellular cyclins. This cyclin is most closely related to cellular D-type cyclins, but biochemically it behaves atypically in various respects. Complexes formed between the viral cyclin and the cyclin-dependent kinase subunit, cdk6, can phosphorylate a wider range of substrates and are resistant to cdk inhibitory proteins. We show here that the KSHV-cyclin-cdk6 complex phosphorylates p27(Kip) on a C-terminal threonine that is implicated in destabilization of this cdk inhibitor. Expression of the viral cyclin in tissue culture cells overcomes a cell cycle block by p27(Kip). However, full cell-cycle transit of these cells appears to depend on C-terminal phosphorylation of p27(Kip) and seems to involve transactivation of other cellular cyclin-dependent kinases. A p27(Kip)-phosphorylating cdk6 complex exists in cell lines derived from primary effusion lymphoma and in Kaposi's sarcoma, this indicating that virally induced p27(Kip) degradation may occur in KSHV-associated tumours.  相似文献   

11.
12.
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-β1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-β1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-β1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-β1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-β1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-β1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-β1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-β1 pathways.  相似文献   

13.
We report that cyclin D3/cdk4 kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. The association of p27kip1 was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27kip1/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27kip1-specific antibodies. The association of p27kip1 with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27kip1 protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27kip1 kinase activity was present throughout the cell cycle. Since we found that the p27kip1 activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27kip1 and the active cyclin D3 lacking p27kip1 by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27kip1/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27kip1 has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.  相似文献   

14.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

15.
16.
We have reported previously that the expression of focal adhesion kinase (FAK) is elevated in glioblastomas and that expression of FAK promotes the proliferation of glioblastoma cells propagated in either soft agar or in the C.B.17 severe combined immunodeficiency (scid) mouse brain. We therefore determined the effect of FAK on cell cycle progression in these cells. We found that overexpression of wild-type FAK promoted exit from G(1) in monolayer cultures of glioblastoma cells, enhanced the expression of cyclins D1 and E while reducing the expression of p27(Kip1) and p21(Waf1), and enhanced the kinase activity of the cyclin D1-cyclin-dependent kinase-4 (cdk4) complex. Transfection of the monolayers with a FAK molecule in which the autophosphorylation site is mutated (FAK397F) inhibited exit from G(1) and reduced the expression of cyclins D1 and E while enhancing the expression of p27(Kip1) and p21(Waf1). Small interfering RNA (siRNA)-mediated down-regulation of cyclin D1 inhibited the enhancement of cell cycle progression observed on expression of wild-type FAK, whereas siRNA-mediated down-regulation of cyclin E had no effect. siRNA-mediated down-regulation of p27(Kip1) overcame the inhibition of cell cycle progression observed on expression of FAK397F, whereas down-regulation of p21(Waf1) had no effect. These results were confirmed in vivo in the scid mouse brain xenograft model in which propagation of glioblastoma cells expressing FAK397F resulted in a 50% inhibition of tumor growth and inhibited exit from G(1). Taken together, our results indicate that FAK promotes proliferation of glioblastoma cells by enhancing exit from G(1) through a mechanism that involves cyclin D1 and p27(Kip1).  相似文献   

17.
18.
DNA tumour viruses have evolved a number of mechanisms by which they deregulate normal cellular growth control. We have recently described the properties of a cyclin encoded by human herpesvirus 8 (also known as Kaposi's sarcoma-associated herpesvirus) which is able to resist the actions of p16(Ink4a), p21(Cip1) and p27(Kip1) cdk inhibitors. Here we investigate the mechanism involved in the subversion of a G1 blockade imposed by overexpression of p27(Kip1). We demonstrate that binding of K cyclin to cdk6 expands the substrate repertoire of this cdk to include a number of substrates phosphorylated by cyclin-cdk2 complexes but not cyclin D1-cdk6. Included amongst these substrates is p27(Kip1) which is phosphorylated on Thr187. Expression of K cyclin in mammalian cells leads to p27(Kip1) downregulation, this being consistent with previous studies indicating that phosphorylation of p27(Kip1) on Thr187 triggers its downregulation. K cyclin expression is not able to prevent a G1 arrest imposed by p27(Kip1) in which Thr187 is mutated to non-phosphorylatable Ala. These results imply that K cyclin is able to bypass a p27(Kip1)-imposed G1 arrest by facilitating phosphorylation and downregulation of p27(Kip1) to enable activation of endogenous cyclin-cdk2 complexes. The extension of the substrate repertoire of cdk6 by K cyclin is likely to contribute to the deregulation of cellular growth by this herpesvirus-encoded cyclin.  相似文献   

19.
p27Kip1 is a potent inhibitor of the cyclin-dependent kinases that drive G1 to S phase transition. Since deregulation of p27Kip1 is found in many malignancies and is associated with the poor prognosis, elucidation of the molecular bases for regulation of p27Kip1 expression is of great significance, not only in providing insight into the understanding of biological p27Kip1, but also in the development of new cancer therapeutic tactics. We here explored the inhibitory regulation of IKKβ on p27Kip1 expression following arsenite exposure. We found that although the basal level of p27Kip1 expression in the IKKβ−/− cells is much lower than that in the IKKβ+/+ cells, the deletion of IKKβ in the MEFs led to a marked increase in p27Kip1 protein induction due to arsenite exposure in comparison to that in the IKKβ+/+ cells. The IKKβ regulatory effect on p27Kip1 expression was also verified in the IKKβ−/− and IKKβ−/− cells with IKKβ reconstitutional expression, IKKβ−/− (IKKβ). Further studies indicated that IKKβ-mediated p27Kip1 downregulation occurred at protein degradation level via p65-dependent and p50-independent manner. Moreover, the results obtained from the comparison of arsenite-induced GSK3β activation among transfectants of WT, IKKβ−/− and IKKβ−/− (IKKβ), and the utilization of GSKβ shRNA, demonstrated that IKKβ regulation of p27 protein degradation was mediated by GSK3β following arsenite exposure.  相似文献   

20.
Little is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O2, 40–64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis. In contrast, exit from G2/M was not inhibited in these cells. After 40 h of hyperoxia, these effects were partially reversible during recovery under normoxic conditions. The inhibition of Cdk2 activity was not due to degradation of Cdk2, cyclin E or A, nor impairment of Cdk2 complex formation with cyclin A or E and p21Cip1. The loss of Cdk2 activity occurred in the absence of induction and recruitment of cdk inhibitor p21Cip1 or p27Kip1 in cyclin A/Cdk2 or cyclin E/Cdk2 complexes. In contrast, Cdk2 inhibition was associated with increased Cdk2-Tyr15 phosphorylation, increased E2F-1 recruitment, and decreased PCNA contents in Cdk2 complexes. The latter results indicate a p21Cip1/p27Kip1-independent mechanism of S-phase checkpoint activation in the hyperoxic T47D cell model investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号