首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Angiogenesis is thoroughly balanced and regulated in health; however, it is dysregulated in many diseases including cancer, age-related macular degeneration, cardiovascular diseases such as coronary and peripheral artery diseases and stroke, abnormal embryonic development, and abnormal wound healing. In addition to angiogenesis, lymphangiogenesis is pivotal for maintaining the immune system, homeostasis of body fluids and lymphoid organs; dysregulated lymphangiogenesis may cause inflammatory diseases and lymph node mediated tumor metastasis. Anti-angiogenic or anti-lymphangiogenic small peptides may play an important role as therapeutic agents normalizing angiogenesis or lymphangiogenesis in disease conditions. Several novel endogenous peptides derived from proteins containing a conserved somatotropin domain have been previously identified with the help of our bioinformatics-based methodology. These somatotropin peptides were screened for inhibition of angiogenesis and lymphangiogenesis using in vitro proliferation, migration, adhesion and tube formation assays with blood and lymphatic endothelial cells. We found that the peptides have the potential for inhibiting both angiogenesis and lymphangiogenesis. Focusing the study on the inhibition of lymphangiogenesis, we found that a peptide derived from the somatotropin conserved domain of transmembrane protein 45A human was the most potent lymphangiogenesis inhibitor, blocking lymphatic endothelial cell migration, adhesion, and tube formation.  相似文献   

2.
Human endothelial cells can be induced to form capillary-like tubular networks in collagen gels. We have used this in vitro model and representational difference analysis to identify genes involved in the formation of new blood vessels. HESR1 (HEY-1/HRT-1/CHF-2/gridlock), a basic helix-loop-helix protein related to the hairy/enhancer of split/HES family, is absent in migrating and proliferating cultures of endothelial cells but is rapidly induced during capillary-like network formation. HESR1 is detectable in all adult tissues and at high levels in well vascularized organs such as heart and brain. Its expression is also enriched in aorta and purified capillaries. Overexpression of HESR1 in endothelial cells down-regulates vascular endothelial cell growth factor receptor-2 (VEGFR2) mRNA levels and blocks proliferation, migration, and network formation. Interestingly, reduction of expression of HESR1 by antisense oligonucleotides also blocks endothelial cell network formation in vitro. Finally, HESR1 expression is altered in several breast, lung, and kidney tumors. These data are consistent with a temporal model for HESR1 action where down-regulation at the initiation of new vessel budding is required to allow VEGFR2-mediated migration and proliferation, but re-expression of HESR1 is necessary for induction of tubular network formation and continued maintenance of the mature, quiescent vessel.  相似文献   

3.
Nacev BA  Liu JO 《PloS one》2011,6(9):e24793
Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.  相似文献   

4.
Abnormal angiogenesis underlies many pathological conditions and is critical for the growth and maintenance of various types of tumors, including hormone-dependent cancers. Since estrogens are potent carcinogens in humans and rodents, and are involved in regulating angiogenesis, this study was designed to examine the effect of estrogen on the behavior of an established bovine capillary endothelial cell line, a simple and physiologically relevant model of the capillary wall. The results demonstrate that 17-estradiol (E2), at different conditions, exerts both stimulatory and inhibitory effects on endothelial cell adhesion, proliferation and tube formation in vitro. Utilizing a cellular attachment assay, chronic exposure to nanomolar concentrations of E2 (i.e. 1 and 10 nM) increased endothelial cell adhesion significantly compared to vehicle treated controls. Cellular adhesion was inhibited by micromolar concentrations of E2. Cell count, PCNA immunohistochemistry and Western blot analysis demonstrated enhanced cell proliferation at low E2 concentration in estrogen-deplete medium. Inhibition of cellular proliferation was observed in both estrogen-replete and deplete medium at higher E2 concentrations (i.e. 1 and 10 µM). Furthermore, in vitro tube formation increased up to 3.0 fold in the presence of 10 nM and higher E2 concentrations. The present observations indicate that in vitro regulation of capillary endothelial cell adhesion, proliferation and capillary tube formation by estrogen, are dose dependent.  相似文献   

5.
Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline. We have previously shown that the notochord is responsible for the generation and maintenance of the avascular midline and that BMP antagonists expressed by this embryonic tissue, including Noggin and Chordin, can mimic this inhibitory role. Here we report that the notochord suppresses the generation of ECs from the mesoderm both in vivo and in vitro. We also report that the notochord diminishes the ability of mature ECs to organize into a primitive plexus. Furthermore, Noggin mimics notochord-based inhibition by preventing mesodermal EC generation and mature EC network formation. These findings suggest that the mesoderm surrounding the midline is competent to give rise to ECs and to form blood vessels, but that notochord derived-BMP antagonists suppress EC differentiation and maturation processes leading to inhibition of midline vessel formation.  相似文献   

6.
7.
Fibrin II induces endothelial cell capillary tube formation   总被引:11,自引:0,他引:11       下载免费PDF全文
We studied the formation of capillary tubes by endothelial cells which were sandwiched between two fibrin gels under serum-free conditions. After formation of the overlying fibrin gel, the endothelial cell monolayer rearranged into an extensive net of capillary tubes. Tube formation was apparent at 5 h and was fully developed by 24 h. The capillary tubes were vacuolated, and both intracellular and intercellular lumina were present. Maximal tube formation was observed with fibrin II (which lacks both fibrinopeptide A and B), minimal tube formation with fibrin I (which lacks only fibrinopeptide A), and complete absence of tube formation with fibrin 325 (which lacks the NH2- terminal beta 15-42 sequence, in addition to fibrinopeptides A and B). The inability of fibrin 325 to stimulate capillary tube formation supports the idea that beta 15-42 plays an important role in this process, and its importance was confirmed by the finding that exogenous soluble beta 15-42 inhibited fibrin II-induced capillary tube formation. This effect was specific for fibrin, since beta 15-42 did not inhibit tube formation by endothelial cells sandwiched between collagen gels. The interaction of the apical surface of the endothelial cell with the overlying fibrin II gel, as opposed to the underlying fibrin gel upon which the cells were seeded, was necessary for capillary tube formation. These studies suggest that the beta 15-42 sequence of fibrin interacts with a component of the apical cell surface and that this interaction plays a fundamental role in the induction of endothelial capillary tube formation.  相似文献   

8.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.  相似文献   

9.
In order to elucidate the association between hyperglycemia and the vascular complications of diabetes, the effects of high glucose concentrations on the migration, proliferation and tube formation of bovine carotid artery endothelial cells were investigated. Cells treated with 16.7 and 33.3 mM glucose for 6 days showed 1.69- and 1.75-fold increase in serum-induced migration compared with cells treated with 5.6 mM glucose (p less than 0.05). The effect of glucose on cell proliferation was affected by serum concentration. When this was below 0.5%, a high glucose concentration stimulated cell growth to a maximum of 1.73 times that at a serum concentration of 0.05% (p less than 0.01) whereas at a serum concentration of 10%, growth was inhibited (p less than 0.05). Tube formation was studied by culturing the cells between two layers of collagen gel. Ultrastructurally, tubular structures were composed of one to several endothelial cells containing pinocytotic vesicles and cytoplasmic projections, and linked by junctional complexes. A basal lamina-like structure surrounded the abluminal surface. Treatment of the cells with 16.7 and 27.8 mM glucose for 4 days stimulated tubular elongation 1.85 and 1.71 times, respectively (p less than 0.01). Other osmogenic molecules such as mannitol and sucrose did not affect tube formation. These data imply that high glucose concentrations mimicking diabetic hyperglycemia may not inhibit the repair of endothelial injury and could act as a stimulator of neovascularization.  相似文献   

10.
Introduction Patients and mice with solid tumors, such as Lewis lung carcinoma (LLC), have defects in functions of immune effector cells. Endothelial cells, a component of the tumor vasculature, are potential regulators of immune cell functions. Therefore, these studies examined the impact of exposure to LLC tumor on the ability of endothelial cells to modulate immune cell functions. Materials and methods Endothelial cells were pre-treated with LLC tumor-conditioned medium (EndoT-sup) for 24 h. Control endothelial cells that were exposed to medium (EndoMedia) or epithelial cell-conditioned medium (EndoEpi-sup). After the initial 24 h incubation, endothelial cells were washed and fresh media was added. Cells were allowed to incubate for an additional 24 h. Supernatants from EndoMedia, EndoEpi-sup or EndoT-sup were collected and assayed for immune modulatory products and for immune modulatory activity. Results Supernatant from EndoT-sup contained increased levels of PGE2, IL-6 and VEGF as compared to EndoMedia and EndoEpi-sup controls. NK cell activity, as measured by TNF-α and IFN-γ secretion, was increased following exposure to media conditioned by EndoMedia and EndoEpi-sup. Exposure of NK cells to supernatants of EndoT-sup, also increases TNF-α and IFN-γ secretion, but to a lesser extent than by EndoMedia and EndoEpi-sup. Examination of macrophage functions demonstrated that supernatant from EndoT-sup decreased microbead phagocytosis and increased production of the immune suppressive mediators, IL-10 and PGE2. Lastly, T-cell responses to stimulation with anti-CD3 in the presence of supernatants from EndoT-sup were examined. IFN-γ production by CD8+ T-cells was reduced after exposure to EndoT-sup-conditioned medium, as compared to cells treatments with medium or control conditioned medium. Production of IFN-γ by CD4+ T-cells exposed to EndoT-sup was not altered. Conclusions Taken together, these studies demonstrate that tumors skew endothelial cells to disrupt NK cell, T-cell and macrophages functions, and represents a novel mechanism of tumor-induced immune suppression.  相似文献   

11.
12.
Vascular endothelial cell growth factor (VEGF) binds to and promotes the activation of one of its receptors, KDR. Once activated, KDR induces the tyrosine phosphorylation of cytoplasmic signaling proteins that are important to endothelial cell proliferation. In human umbilical vein endothelial cells (HUVECs), tumor necrosis factor (TNF) inhibits the phosphorylation and activation of KDR. The ability of TNF to diminish VEGF-stimulated KDR activity was impaired by sodium orthovanadate, suggesting that the inhibitory activity of TNF was mediated by a protein-tyrosine phosphatase. KDR-initiated responses specifically associated with endothelial cell proliferation, mitogen-activated protein kinase activation and DNA synthesis, were also inhibited by TNF, and this was reversed by sodium orthovanadate. Stimulation of HUVECs with TNF induced association of the SHP-1 protein-tyrosine phosphatase with KDR, identifying this phosphatase as a candidate negative regulator of VEGF signal transduction. Heterologous receptor inactivation mediated by a protein-tyrosine phosphatase provides insight into how TNF may inhibit endothelial cell proliferative responses and modulate angiogenesis in pathological settings.  相似文献   

13.
A novel class of bisindolylmaleimides were synthesized and antiproliferative activities (HUVECs and three tumor cell lines) of these compounds were investigated. Two water-soluble derivatives, 10 and 12, possessing a dimethylaminoalkoxy side chain in their structure, showed interesting activity and selectivity on HUVECs proliferation.  相似文献   

14.
Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. CONCLUSIONS: Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.  相似文献   

15.
Heparin-carrying polystyrene (HCPS) consists of low-molecular-weight heparin chains enriched in trisulfated disaccharide structures linked to a polystyrene core. In this study, the interactions between HCPSs of various molecular weights and heparin-binding growth factors, VEGF(165), FGF-2, and HGF, were compared to the interactions of the same factors with native heparin, periodate-oxidized heparin (IO(4)-heparin) and periodate-oxidized alkaline-degraded heparin (IO(4)-LMW-heparin). The binding of each growth factor to heparin-agarose beads (heparin-beads) was more strongly inhibited by HCPSs in a molecular weight-dependent manner than by native heparin or the modified heparins, indicating a stronger interaction between HCPS and these growth factors. HCPSs also inhibit heparin-binding growth factor-induced endothelial cell growth in a molecular weight-dependent manner much more strongly than the native or modified heparins. However, HCPSs did not inhibit the mitogenic activity of VEGF(121), which has a non-heparin-binding nature. Thus, HCPSs exhibit enhanced abilities to interact with each of the heparin-binding growth factors studied and to inhibit heparin-binding growth factor-induced endothelial cell proliferation in a molecular weight-dependent manner. These effects might be ascribed to the heparin-clustering effect of HCPSs.  相似文献   

16.
S-nitrosothiols (RSNOs) are important mediators of nitric oxide (NO) biology. The two mechanisms that appear to dominate in their biological effects are metabolism leading to the formation of NO and S-nitrosation of protein thiols. In this study we demonstrate that RSNOs inhibit uterine smooth muscle cell proliferation independent of NO. The antiproliferative effects of NO on vascular smooth muscle are well defined, with the classic NO-dependent production of cGMP being demonstrated as the active pathway. However, less is known on the role of NO in mediating uterine smooth muscle cell function, a process that is important during menstruation and pregnancy. The RSNOs S-nitrosoglutathione and S-nitroso-N-acetyl pencillamine inhibited growth factor-dependent proliferation of human and rat uterine smooth muscle cells (ELT-3). Interestingly, these cells reduced RSNOs to generate NO. However, use of NO donors and other activators of the cGMP pathway failed to inhibit proliferation. These findings demonstrate the tissue-specific nature of responses to NO and demonstrate the presence of a RSNO-dependent but NO-independent pathway of inhibiting DNA synthesis in uterine smooth muscle cells.  相似文献   

17.
The cells that line the lumen of rabbit aorta have been obtained in a quantity sufficient for mass culture. Autoradiography of the cells incubated with 35S-sulfuric acid and electrophoretic analysis of 35S mucopolysaccharides extracted from the cells and from the medium indicate that these cells synthesize and secrete various species of sulfated mucopolysaccharides. In the steady state, only one major and one minor component are found inside the cell. The major intracellular component is resistant to degradation by chondroitinase ABC. Two major fractions and one minor fraction are found in the culture medium at the end of a 24 h labelling period. Both of the major components extracted from the medium are not present in the cell in an appreciable amount.  相似文献   

18.
The anti-angiogenic agents angiostatin and endostatin have been shown to affect endothelial cell migration in a number of studies. We have examined the effect of these agents on intracellular signalling pathways known to regulate endothelial cell migration and proliferation/survival. Both agents inhibited fibroblast growth factor (FGF)-, and vascular endothelial growth factor (VEGF)-mediated migration of primary human microvascular endothelial cells and affected vascular formation in the embryoid body model. However, using phosphospecific antibodies we could not detect any effect of angiostatin or endostatin on phospholipase C-gamma (PLC-gamma), Akt/PKB, p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK and p21-activated kinase (PAK) activity. Furthermore, using a glutathione S-transferase (GST)-PAK pull-down assay, we could not detect any effect on Rac activity. We conclude that angiostatin and endostatin inhibit chemotaxis, without affecting intracellular signalling pathways known to regulate endothelial migration and proliferation/survival.  相似文献   

19.
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.  相似文献   

20.
Dysregulated angiogenesis contributes to the pathogenesis of chronic inflammatory diseases. Modulation of the extracellular matrix by immune-derived proteases can alter endothelial cell–matrix interactions as well as endothelial cell sprouting, migration and capillary formation. Granzyme B is a serine protease that is expressed by a variety of immune cells, and accumulates in the extracellular milieu in many chronic inflammatory disorders that are associated with dysregulated angiogenesis. Although granzyme B is known to cleave fibronectin, an essential glycoprotein in vascular morphogenesis, the role of granzyme B in modulating angiogenesis is unknown. In the present study, granzyme B cleaved both plasma fibronectin and cell-derived fibronectin, resulting in the release of multiple fibronectin fragments. Granzyme B cleavage of fibronectin resulted in a dose-dependent reduction in endothelial cell adhesion to fibronectin as well as reduced endothelial cell migration and tubular formation. These events were prevented when granzyme B activity was inhibited by a small molecule inhibitor. In summary, granzyme B-mediated cleavage of fibronectin contributes to attenuated angiogenesis through the disruption of endothelial cell — fibronectin interaction resulting in impaired endothelial cell migration and tubular formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号