首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presently utilized walking patterns in paraplegic subjects with complete spinal cord injury (SCI) are compared by the help of graphic representations. Improved four-point gait assisted by functional electrical stimulation (FES) and crutches is proposed by introducing unstable states into the walking sequence. The unstable states are defined as passive phases of walking where the centre of mass (COM) is gravity driven in the direction of progression. The unstable state is described by a simple inverted pendulum model. Kinematic measurements of the unstable state were performed in normal and paraplegic subjects.  相似文献   

2.
Functional neuromuscular stimulation (FNS)/functional electrical stimulation (FES) is a potential way to restore some functionality to the limbs of patients with spinal cord injury through direct/indirect stimulation of the motoneuron. One of the constraints for wider use of FNS on paraplegic patients is the lack of efficient control algorithm. Most of the published works on FNS/FES control are based on oversimplified models of human body dynamics. An innovative control strategy for stabilizing the standing posture of paraplegic patients is proposed here which is a combination of a proportional-plus-derivative controller for motions of the skeletal system and a control action prediction mechanism to produce musculotendon activation. The goal is to produce musculotendon torque which can approximate those demanded by the controller for the skeletal system. In computer simulations, using a detailed skeletal–musculotendon–muscle activation dynamics model of human body, this FNS/FES control approach can stabilize a paraplegic patient's standing posture with the minimum number of musculotendon groups. Also, it is found that this control strategy can maintain stability even in the presence of reasonable variations in the controller's musculotendon parameters.  相似文献   

3.
 For individuals with paraplegia, standing up requires activation of paralyzed leg muscles by an artificial functional electrical stimulation (FES) controller and voluntary control of arm forces by the individual. Any knowledge of such voluntary control, particularly its prediction, could be used to design more effective FES controllers. Therefore, artificial neural network models were developed to predict voluntary arm forces from measured angular positions of the ankle, knee, and hip joints during FES-assisted standing up in paraplegia. The training data were collected from eight paraplegic subjects in repeated standing-up trials, and divided into two categories for training and validation. The predictions of the models closely followed both the training and validation data, showing good accuracy and generalization. The comparison of the models showed that, although there are striking similarities among the voluntary controls adopted by different subjects, each subject develops his/her own `personal strategy' to control the arm forces, which is consistent from trial to trial. The level of consistency was dependent on the experience in using FES, injury level, body weight, and other subject-specific parameters. Received: 5 January 1999 / Accepted in revised form: 29 January 2001  相似文献   

4.
A major limitation in the utilization of a functional electrical stimulation (FES) orthosis for routine, daily standing and walking of the spinal-cord-injured person is that visual monitoring is required to maintain balance and the walking pace. For standing and walking to be continuous and automatic with such an orthosis, a closed-loop sensory feedback system is proposed and evaluated; it provides vibrotactile feedback as a substitute to one's own visual sensation. Eight blindfolded experimental subjects were utilized as ‘imitators’ to interpret the footfalls of a second person (the pace setter). The experimental objective was to test the hypothesis that sufficient information could be transferred by way of the sensory (tactile) feedback system to the ‘imitator’ and to determine effectively foot position and anticipate the next step of the pacesetter. Quantitative analysis evaluated the effect of three different levels of training, under two different levels of cognitive load. The results disclosed a significant improvement in subject performance at the higher training levels compared with the ‘no training’ level (P = 0.01). Neither the cognitive load nor the interaction of training and cognitive load altered significantly the effect of training on subject performance. The experimental hypothesis is therefore satisfied that sufficient information was indeed transferred using the apparatus described. Such information (when utilized in conjunction with a thorough training programme) could be used in a practical sense by a paraplegic individual to interpret his own foot steps. Through continued use and training, it is likely that this information could become subconscious and automatic. Therefore, the spinal-cord-injured person would walk with an FES orthosis in various environments and minimize or remove their reliance on visual sensory information.  相似文献   

5.
We describe and evaluate above- and below-lesion EMG control of functional electrical stimulation (FES) in upper motor neuron paraplegics, in order to provide them with a patient-responsive system for walking with a walker support. Control is considered in terms of a combination of above-lesion EMG control and below-lesion response-EMG control. The above-lesion EMG is used to control the activation of limb functions involved in standing up and walking with FES, control being accomplished by analysing raw surface-EMG time-series patterns to discriminate between upper-trunk muscle contraction patterns, which in turn, are correlated with intended lower-limb functions involved in walking, so that natural and instinctive balance changes in paraplegics are controlled by the patient from above the lesion. The below-lesion response-EMG is the EMG produced in response to the FES pulses at the stimulation sites, for adjusting stimulation levels as needed when contractions weaken due to muscle fatigue. Above-lesion EMG is a stochastic (random-like) signal, being a response to unsynchronized motor neuron firings, whereas the below-lesion EMG is a deterministic signal responding to synchronized firings that result solely from the FES pulses. We also discuss the merits and difficulties of EMG control, and evaluate patient performance under such control, noting that FES-activated walking without adequate and patient-responsive control is of very limited use to paraplegics.  相似文献   

6.
The use of functional electrical stimulation (FES) of muscle for paraplegic locomotion, or grasp augmentation in tetraplegia, is limited by the variability in muscle response to stimulation as a result of several external and internal factors. Previous approaches to this problem have used position-servo controllers, which have been shown to function satisfactorily in the laboratory. However, such systems will fail should obstacles be encountered or should the stimulation hardware develop a fault. To prevent such potentially dangerous failures some form of sensory feedback is required. This paper describes the first application of a technique known as extended physiological proprioception (EPP) to the control of FES to compensate for muscle response variability and provide proprioceptive feedback via the appropriate sensory pathways. In the experimental system described, a paraplegic subject controlled the extension of his paralysed knee by shoulder protraction. A Bowden cable linked the two joints, and a dynamometer in this cable was used to derive the control signal for a computer-controlled stimulator which delivered surface stimulation to the quadriceps muscle group. Modelling and parameter identification were performed by analysis of the step response, and the controller was designed from consideration of the root locus. The advantages of the system, in terms of improved proprioceptive feedback and reduced limb-positioning error were assessed in a test of joint positioning accuracy with vision occluded. The EPP system showed improvements over both open and closed-loop position-servo controllers.  相似文献   

7.
ObjectiveTo investigate the effects of functional electrical stimulation (FES) combined with conventional rehabilitation program on the effort and speed of walking, the surface electromyographic (sEMG) activity and metabolic responses in the management of drop foot in stroke subjects.MethodsFifteen patients with a drop foot resulting from stroke at least 3 months prior to the start of the trial took part in this study. All subjects were treated 1 h a day, 5 days a week, for 12 weeks, including conventional stroke rehabilitation program and received 30 min of FES to the tibialis anterior (TA) muscle of the paretic leg in clinical settings. Baseline and post-treatment measurements were made for temporal and spectral EMG parameters of TA muscle, walking speed, the effort of walking as measured by physiological cost index (PCI) and metabolic responses.ResultsThe experimental results showed a significant improvement in mean-absolute-value (21.7%), root-mean-square (66.3%) and median frequency (10.6%) of TA muscle EMG signal, which reflects increased muscle strength. Mean increase in walking speed was 38.7%, and a reduction in PCI of 34.6% between the beginning and at end of the trial. Improvements were also found in cardiorespiratory responses with reduction in oxygen consumption (24.3%), carbon dioxide production (19.9%), heart rate (7.8%) and energy cost (22.5%) while walking with FES device.ConclusionsThe results indicate that the FES may be a useful therapeutic tool combined with conventional rehabilitation program to improve the muscle strength, walking ability and metabolic responses in the management of drop foot with stroke patients.  相似文献   

8.
Arm-free paraplegic standing via functional electrical stimulation (FES) has drawn much attention in the biomechanical field as it might allow a paraplegic to stand and simultaneously use both arms to perform daily activities. However, current FES systems for standing require that the individual actively regulates balance using one or both arms, thus limiting the practical use of these systems. The purpose of the present study was to show that actuating only six out of 12 degrees of freedom (12-DOFs) in the lower limbs to allow paraplegics to stand freely is theoretically feasible with respect to multibody stability and physiological torque limitations of the lower limb DOF. Specifically, the goal was to determine the optimal combination of the minimum DOF that can be realistically actuated using FES while ensuring stability and able-bodied kinematics during perturbed arm-free standing. The human body was represented by a three-dimensional dynamics model with 12-DOFs in the lower limbs. Nakamura's method (Nakamura, Y., and Ghodoussi, U., 1989, "Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators," IEEE Trans. Rob. Autom., 5(3), pp. 294-302) was applied to estimate the joint torques of the system using experimental motion data from four healthy subjects. The torques were estimated by applying our previous finding that only 6 (6-DOFs) out of 12-DOFs in the lower limbs need to be actuated to facilitate stable standing. Furthermore, it was shown that six cases of 6-DOFs exist, which facilitate stable standing. In order to characterize each of these cases in terms of the torque generation patterns and to identify a potential optimal 6-DOF combination, the joint torques during perturbations in eight different directions were estimated for all six cases of 6-DOFs. The results suggest that the actuation of both ankle flexionextension, both knee flexionextension, one hip flexionextension, and one hip abductionadduction DOF will result in the minimum torque requirements to regulate balance during perturbed standing. To facilitate unsupported FES-assisted standing, it is sufficient to actuate only 6-DOFs. An optimal combination of 6-DOFs exists, for which this system can generate able-bodied kinematics while requiring lower limb joint torques that are producible using contemporary FES technology. These findings suggest that FES-assisted arm-free standing of paraplegics is theoretically feasible, even when limited by the fact that muscles actuating specific DOFs are often denervated or difficult to access.  相似文献   

9.
Standing by means of functional electrical stimulation (FES) after spinal cord injury is a topic widely reported in the neurorehabilitation literature. This practice commonly uses surface stimulation over the quadriceps muscle to evoke knee extension. To date, most FES neuroprostheses still operate without any artificial feedback, meaning that after a fatigue-driven knee buckle event, the stimulation amplitude or pulse width must be increased manually via button presses to re-establish knee-lock. This is often referred to as ‘hand-controlled (HC) operation’. In an attempt to provide a safer, yet clinically practical approach, this study proposed two novel strategies to automate the control of knee extension based on the kinematic feedback of four miniaturised motion sensors. These strategies were compared to the traditional HC strategy on four individuals with complete paraplegia. The standing times observed over multiple trials were in general longer for the automated strategies when compared to HC (0.5–80%). With the automated strategies, three of the subjects tended to need less upper body support over a frame to maintain balance. A stability analysis based on centre of pressure (CoP) measurements also favoured the automated strategies. This analysis also revealed that although FES standing with the assistance of a frame was likely to be safe for the subjects, their stability was still inferior to that of able-bodied individuals. Overall, the unpredictability of knee buckle events could be more effectively controlled by automated FES strategies to re-establish knee-lock when compared to the traditional user-controlled approach, thus demonstrating the safety and clinical efficacy of an automated approach.  相似文献   

10.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

11.
A group of 35 paraplegic subjects using reciprocating walking orthoses have been examined in order to gain an insight into the potential functional benefits of using such devices. Measurements have been made of walking speeds and of the energy costs of ambulation using an established technique based on heart rate recordings. It was found that orthotically aided walking for paraplegics was slow and energy costly compared with both normal walking and wheelchair propulsion and, as it additionally requires the use of a walking aid in both hands, cannot be considered to confer the functional benefits frequently claimed for it. Nevertheless, the majority of the subjects studied liked their orthosis and did well in it, with many subjectively reporting improvements in mobility and independence.  相似文献   

12.
Functional electrical stimulation may be used to correct hemiplegic drop foot. An optimised stimulation envelope to reproduce the EMG pattern observed in the tibialis anterior (TA) during healthy gait has been proposed by O'Keeffe et al. [O'Keeffe, D.T., Donnelly, A.E., Lyons, G.M., 2003. The development of a potential optimised stimulation intensity envelope for drop foot applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering]. However this envelope did not attempt to account for changes in TA activity with walking speed. The objective of this paper was to provide data to enable the specification of an algorithm to control the adaptation of an envelope with walking speed. Ten young healthy subjects walked on a treadmill at 11 different walking speeds while TA EMG was recorded. The results showed that TA EMG recorded around initial contact and at toe off changed with walking speed. At the slowest velocities, equivalent to hemiplegic walking, the toe-off burst (TOB) of EMG activity had larger peak amplitude than that of the heel-strike burst (HSB). The peak amplitude ratio of TOB:HSB was 1:0.69 at the slowest speed compared to, 1:1.18 and 1:1.5 for the self-selected and fastest speed, respectively. These results suggest that an FES envelope, which produces larger EMG amplitude for the TOB than the HSB, would be more appropriate at walking speeds typical of hemiplegic patients.  相似文献   

13.
This study addresses the question whether unintended response of the knee flexors (hamstrings) accompanies transcutaneous functional electrical stimulation (FES) of the quadriceps and whether the knee torque is hereby affected. Transcutaneous FES of the right quadriceps of two paraplegic subjects was applied and measurements were made of the net torque and of the myoelectric activities of the quadriceps and hamstrings muscles of the right leg. A low correlation was obtained between the peak-to-peak amplitudes of the M-waves of the two muscles. This correlation decreased further with the development of fatigue, which indicated that the electromyography (EMG) signals from the hamstrings were not the result of cross-talk between adjacent recording sites. The force profile of each muscle was determined from a developed model incorporating EMG-based activation, muscle anthropometry as obtained from in vivo magnetic resonance imaging of the thigh, and metabolic fatigue function, based on data acquired by 31P nuclear magnetic resonance spectroscopy. A sensitivity analysis revealed that the muscle specific tension and the muscle moment arms have a major influence on the resulting muscle forces and should therefore be accurately provided. The results show that during the unfatigued phase of contraction the estimated maximal force in the hamstrings was lower than 20% of that in the quadriceps and could be considered to be practically negligible. As fatigue progressed the hamstrings-to-quadriceps force ratio increased, reaching up to 45%, and the effect of co-activation on the torque partition between the two muscles was no longer negligible.  相似文献   

14.
The mathematical relationship between the kinetic data of joint motion and the functional electrical stimulation (FES) voltage of the corresponding antagonistic pair of muscles is given on the basis of a dynamic ankle joint model. The mathematical model is solved with the aid of state variables, while the resulting electrical stimulation voltage is found as a solution of the Volterra integral equation. The calculated stimulation voltage was applied to the plantar and dorsiflexors of the ankle joint of a hemiplegic patient. The measured ground reaction forces and goniograms during walking with and without electrical stimulation showed a significant improvement of the patient's gait. The problems of low saturation muscle force during FES, the need for individual determination of model parameters, nonlinearities of the system and the variability of gait are discussed.  相似文献   

15.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

16.
A hybrid functional electrical stimulation (FES) orthosis is described, comprising a rigid ankle-foot brace, a multi-channel FES stimulator with surface electrodes, body mounted sensors, a ‘rule-based’ controller and an electro-cutaneous display for supplementary sensory feedback. The mechanical brace provides stability, without FES activation of muscles, for standing postures normally adopted by patients. This avoids inducing muscle fatigue during prolonged upright activity. However, stability is conditional upon the position of the ground reaction vector (GRV) relative to the knee joint. The finite state FES controller reacts automatically to destabilizing shifts of the GRV by stimulating appropriate anti-gravity musculature to brace the leg. The FES system also features a control mode to initiate and terminate flexion of the leg during forward progression. A simple mode of supplementary sensory feedback was used during the laboratory standing tests to assist the patient in maintaining a set posture. Preliminary results of laboratory tests for two spinal cord injured subjects are presented.  相似文献   

17.
The purpose of this study was to examine cardiac hemodynamics during acute head-up tilt (HUT) and calf venous function during acute head-down tilt (HDT) in subjects with paraplegia compared with sedentary nondisabled controls. Nineteen paraplegic males (below T6) and nine age-, height-, and weight-matched control subjects participated. Heart rate, stroke volume, and cardiac output were assessed using the noninvasive acetylene uptake method. Venous vascular function of the calf was assessed using venous occlusion plethysmography. After supine measurements were collected, the table was moved to 10 degrees HDT followed by the three levels of HUT (10, 35, and 75 degrees ) in random order. Cardiac hemodynamics were similar between the groups at all positions. Calf circumference was significantly reduced in the paraplegic group compared with the control group (P < 0.001). Venous capacitance and compliance were significantly reduced in the paraplegic compared with control group at supine and HDT. Neither venous capacitance (P = 0.37) nor compliance (P = 0.19) increased from supine with 10 degrees HDT in the paraplegic group. A significant linear relationship was established between supine venous compliance and supine cardiac output in the control group (r = 0.80, P < 0.02) but not in the paraplegic group. The findings of reduced calf circumference and similar venous capacitance at supine rest and 10 degrees HDT in the paraplegic group imply that structural changes may have limited venous dispensability in individuals with chronic paraplegia. Furthermore, the lack of a relationship between supine venous compliance and supine cardiac output suggests that cardiac homeostasis does not rely on venous compliance in subjects with paraplegia.  相似文献   

18.
In paraplegic patients with upper motor neuron lesions the signal path from the central nervous system to the muscles is interrupted. Functional electrical stimulation applied to the lower motor neurons can replace the lacking signals. A so-called neuroprosthesis may be used to restore motor function in paraplegic patients on the basis of functional electrical stimulation. However, the control of multiple joints is difficult due to the complexity, nonlinearity, and time-variance of the system involved. Furthermore, effects such as muscle fatigue, spasticity, and limited force in the stimulated muscle further complicate the control task. Mathematical models of the human musculoskeletal system can support the development of neuroprosthesis. In this article a detailed overview of the existing work in the literature is given and two examples developed by the author are presented that give an insight into model-based development of neuroprosthesis for paraplegic patients. It is shown that modelling the musculoskeletal system can provide better understanding of muscular force production and movement coordination principles. Models can also be used to design and test stimulation patterns and feedback control strategies. Additionally, model components can be implemented in a controller to improve control performance. Eventually, the use of musculoskeletal models for neuroprosthesis design may help to avoid internal disturbances such as fatigue and optimize muscular force output. Furthermore, better controller quality can be obtained than in previous empirical approaches. In addition, the number of experimental tests to be performed with human subjects can be reduced. It is concluded that mathematical models play an increasing role in the development of reliable closed-loop controlled, lower extremity neuroprostheses.  相似文献   

19.
Fatigue compensation during FES using surface EMG   总被引:5,自引:0,他引:5  
Muscle fatigue limits the effectiveness of FES when applied to regain functional movements in spinal cord injured (SCI) individuals. The stimulation intensity must be manually increased to provide more force output to compensate for the decreasing muscle force due to fatigue. An artificial neural network (ANN) system was designed to compensate for muscle fatigue during functional electrical stimulation (FES) by maintaining a constant joint angle. Surface electromyography signals (EMG) from electrically stimulated muscles were used to determine when to increase the stimulation intensity when the muscle’s output started to drop.

In two separate experiments on able-bodied subjects seated in hard back chairs, electrical stimulation was continuously applied to fatigue either the biceps (during elbow flexion) or the quadriceps muscle (during leg extension) while recording the surface EMG. An ANN system was created using processed surface EMG as the input, and a discrete fatigue compensation control signal, indicating when to increase the stimulation current, as the output. In order to provide training examples and test the systems’ performance, the stimulation current amplitude was manually increased to maintain constant joint angles. Manual stimulation amplitude increases were required upon observing a significant decrease in the joint angle. The goal of the ANN system was to generate fatigue compensation control signals in an attempt to maintain a constant joint angle.

On average, the systems could correctly predict 78.5% of the instances at which a stimulation increase was required to maintain the joint angle. The performance of these ANN systems demonstrates the feasibility of using surface EMG feedback in an FES control system.  相似文献   


20.
This paper reviews recent topics of clinical application of functional electrical stimulation (FES) for the paralyzed extremities in Japan. Transcutaneous and percutaneous FES systems have been clinically used in Japan. Candidates of extremity FES arer mostly stroke and spinal cord injury patients. By using percutaneous FES system, all of the joints of the upper extremity including the shoulder have been controlled for activities of daily living in the hemiplegic patient. Simultaneous FES control of the hand and wrist and the bilateral hands have also been achieved in C5 and C6 quadriplegics, respectively. Hybrid FES systems using percutaneous and surface electrodes, where FES is used in combination with orthoses, have been applied to the paraplegics because they are highly practical for assisting their locomotive activities. Percutaneous FES have been also provided the amyotropic lateral sclerosis patients with standing up motion. A total implant FES system with 16 output channels is currently developing as a next generation FES system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号