首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Methyl methacrylate vascular corrosion replicas were used to examine the macrocirculation in the head region and the microcirculation of respiratory vessels in the air-breathing swamp eel Monopterus cuchia. Fixed respiratory tissue was also examined by SEM to verify capillary orientation. The respiratory and systemic circulations are only partially separated, presumably resulting in supply of mixed oxygenated and venous blood to the tissues. A long ventral aorta gives rise directly to the coronary and hypobranchial arteries. Two large shunt vessels connect the ventral aorta to the dorsal aorta, whereas the remaining ventral aortic flow goes to the respiratory islets and gills. Only two pairs of vestigial gill arches remain, equivalent to the second and third arches, yet five pairs of aortic arches were identified. Most aortic arches supply the respiratory islets. Respiratory islet capillaries are tightly coiled spirals with only a fraction of their total length in contact with the respiratory epithelium. Valve-like endothelial cells delimit the capillary spirals and are unlike endothelial cells in other vertebrates. The gills are highly modified in that the lamellae are reduced to a single-channel capillary with a characteristic three-dimensional zig-zag pathway. There are no arterio-arterial lamellar shunts, although the afferent branchial artery supplying the gill arches also supplies respiratory islets distally. A modified interlamellar filamental vasculature is present in gill tissue but absent or greatly reduced in the respiratory islets. The macro- and micro-circulatory systems of M. cuchia have been considerably modified presumably to accommodate aerial respiration. Some of these modifications involve retention of primitive vessel types, whereas others, especially in the microcirculation, incorporate new architectural designs some of whose functions are not readily apparent.  相似文献   

2.
 Lymphatic capillaries are distributed throughout the body of lepidosirenid and protopterid Dipnoi, except in the central nervous system. They form small, interconnected units which are individually evacuated into nearby blood capillaries by lymphatic micropumps. The number of lymphatic micropumps varies considerably in different parts of the body. In fin areas, 30–50 per mm3 tissue may be considered normal in Protopterus annectens, but up to 105 per mm3 have been counted in an anterior fin of Lepidosiren paradoxa. Lymphatic capillaries are formed by thin endothelial cells with fine processes into the surrounding interstitial space. Occasionally there is a faint, discontinuous basal lamina. Pericytes, however, are completely absent. Microfibrils establish contact between endothelial cells and surrounding connective tissue fibers. The lymphatic micropumps are essentially spherical, contractile organs of 35–55 μm in diameter. Their central lumen is lined by extensions of a single endothelial cell. Additional endothelial cells form inflow and outflow valves. The endothelial layer is surrounded by a single large, highly specialized muscle cell. This spherical muscle cell has many perforations, allowing the passage of thin outward processes of the endothelial cell which form part of the suspension apparatus of the lymphatic micropump. The muscle cell establishes a specialized end-to-end contact between opposing parts of its own cell membrane. This contact is very similar to an intercalated disc in vertebrate heart muscle. Each lymphatic micropump is suspended within a cell-free tissue area by microfibrils which radiate from the lymphatic micropump into the surrounding connective tissue. The microfibrils are occasionally reinforced by single collagen fibers. The cell-free area around each lymphatic micropump appears as a bright halo in both light and electron micrographs. No type of lymphatic vessel other than lymphatic capillaries could be detected in the Dipnoi studied. Lepidosireniform Dipnoi are the only Vertebrata besides the Tetrapoda in which lymphatic vessels and characteristic lymphatic pumps have been documented. In addition, these Dipnoi and all Tetrapoda share the same overall design of blood circulation, which is not divided into a primary and a secondary system of vessels, as it is in Actinopterygii, Chondrichthyes, and Agnatha. Since there are primary and secondary blood vessels in the gills of Latimeria chalumnae, while the existence of lymphatic vessels has not been confirmed, general angioarchitecture should be taken into account as an important character when phylogenetic relationships among extant Sarcopterygii are discussed. Accepted: 7 October 1997  相似文献   

3.
The numbers of plasmalemmal vesicles in endothelial cells of rat blood vessels were determined on electron microscopic sections. In all vessels examined which included aorta and carotid and femoral arteries, vena cava and femoral vein, and lung and brain capillaries, the numbers were of the same order of magnitude. For arteries the numbers were about double those for the corresponding veins. About one-third of all vesicles could be stained with ruthenium red after its infusion into the vessels. The results make it improbable that differences in numbers of 'transport' vesicles in different types of blood vessel contribute significantly to the selective accumulation of atherogenic plasma proteins in arteries.  相似文献   

4.
The vascularization of the pituitary region in Acipenser ruthenus L. (Chondrostei) is described. The adenohypophysis has no direct arterial supply but is fed exclusively by a pituitary portal system supplied through a pair of infundibular arteries. Distinct portal vessels connect the lateral part of the primary plexus of the neurohaemal area (the median eminence) with the secondary plexus of the pituitary gland. The primary plexus enters the pars distalis paramedially, apparently without the formation of distinct portal vessels. The neuro-intermediate lobe receives its blood supply exclusively from the primary plexus. The plexus intermedius gives off capillaries to the parenchyma of the intermediate lobe (an intermediate lobe sinus system). The saccus vasculosus receives (1) a “direct” supply, i.e. branches originating directly from the cerebral arteries and (2) an “indirect” supply, i.e. capillaries from the primary plexus. The pars distalis is drained into an unpaired ventral hypophysial vein, while a dorsal hypophysial vein, also unpaired, drains the plexus intermedius. These two veins join to form the unpaired hypophysial vein. The findings are discussed from comparative and functional viewpoints.  相似文献   

5.
To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ~5 μm for the smallest arteries (<16-μm diameter) to ~20 μm for the largest arteries (>200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the cortical and medullary circulations (i.e., arcuate and proximal interlobular arteries) rather than the smaller vessels specific to the cortical circulation (distal interlobular arteries and afferent arterioles).  相似文献   

6.
The maturation of the capillaries of the primary portal plexus in rats during the perinatal period has been studied light- and electron-microscopically. The number of capillaries covering the median eminence and of those invading the nervous tissue (capillary loops) increases significantly with age. Capillary loops were observed as early as the 18th fetal day. The mitotic divisions of the endothelial cells within the preexisting capillaries seem to be the main reason for the vascular growth. Immature capillaries with a characteristic narrow lumen are surrounded by a fuzzy basal lamina; their wall is formed by a generally expanded endothelium with rather sparse organelles and inclusions, and by minute flattened areas. The maturation of the capillary results in a progressive spread of flattened endothelium followed by an enlargment of the capillary lumen. Moreover, a rising concentration of organelles and inclusions, relatively numerous luminal microvilli, and a dense and uniform basal lamina become noticeable as capillary differentiation proceeds. These data are thought to reflect the progressive increase in the metabolic activity of the endothelium as well as the establishment of capillary patency during the perinatal period of rats.  相似文献   

7.
Summary The angioarchitecture of the hypophysial portal system of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, was investigated by electron microscopy in conjunction with light microscopy of serial thick sections.The small arteries or arterioles supplying the primary capillary plexus of the median eminence have the typical form of arterioles.The vessels of the primary capillary plexus, on the surface of the median eminence, with their many fenestrations and pinocytotic vesicles, are typical of the form of capillary usually found in other endocrine organs.The portal vessels in the pars tuberalis have wide perivascular spaces between the basement membrane of the endothelium and that of parenchymal lobules of the pars tuberalis. These perivascular spaces are occupied usually by the perivascular cells, but sometimes contain erythrocytes.The endothelial cells of the portal vessels often protrude into vascular lumen giving the appearance of valve-like structures. These may have a role in the regulation of blood flow.The endothelial cells of the portal vessels are invested by a definitive basement membrane and by the cytoplasm of pericytes which are oriented spirally to the longitudinal axes of the vessels. The pericytes may have a function in the mechanical support of the vascular wall and a contractile function that might regulate the flow rate of blood.The investigation reported herein was supported by a scientific research grant (No. 291049) from the Ministry of Education of Japan to Prof. Mikami; by a grant from the Deutsche Forschungsgemeinschaft to Prof. Oksche; by a grant (5 ROI-NB 06817) from the National Institutes of Health to Prof. Farner, and by a research grant (5 ROI-HE 07240 NEUA) from the National Institutes of Health to Prof. Vitums.  相似文献   

8.
During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1. The emergence of vascular lumens is characterized by elongation of endothelial cell shape, reorganization of junctions away from the cord center to the periphery of the vessel, and onset of Claudin-5 expression within tight junctions. Furthermore, unlike most vertebrate vessels that exhibit specialized apical and basal domains, we show that early Xenopus vessels are not polarized. Moreover, we demonstrate that in embryos depleted of the extracellular matrix factor Epidermal Growth Factor-Like Domain 7 (EGFL7), an evolutionarily conserved factor associated with vertebrate vessel development, vascular lumens fail to form. While Claudin-5 localizes to endothelial tight junctions of EGFL7-depleted embryos in a timely manner, endothelial cells of the aorta and veins fail to undergo appropriate cell shape changes or clear junctions from the cell-cell contact. Taken together, we demonstrate for the first time the mechanisms by which lumens are generated within the major vessels in Xenopus and implicate EGFL7 in modulating cell shape and cell-cell junctions to drive proper lumen morphogenesis.  相似文献   

9.
Microscopical observations have been made on the blood circulation of intact, unanaesthetized specimens of the transparent glass catfish. Along the segmental arteries of the trunk, groups of short, curled vessels of capillary dimensions (termed inter-arterial anastomoses) branch off and reunite to form large so-called secondary arteries running parallel to the main (primary) arteries. Secondary arteries give rise to capillaries in the median ventral fin membrane. Secondary capilaries are drained via separate secondary veins. When blood passes from primary to secondary arteries via the inter-arterial anastomoses a pronounced plasma skimming is observed. Hence, blood perfusing the secondary capillaries of the fin membrane contains very few red blood cells.  相似文献   

10.
The four paired gill arches of the South American lungfish Lepidosiren paradoxa contain single branchial arteries directly connecting dorsal and ventral arteries. In gill arches 3 and 4 the branchial arteries also supply looped arlerioles and capillaries to much-reduced gill filaments. Regulation of blood between these routes is thought to be by alteration of vascular resistance. Within the filaments, extensive subepithelial capillary networks and numerous small pumps connect lymphatic vessels in the central connective tissue compartment with venules which, in turn, drain to paired branchial veins.
The features of the endothelium of many of the filament blood vessels suggest extensive transporting, haematolytic and granulopoeitic functions. Large numbers of macrophages pack the connective tissue. Many contain extensive quantities of haemosiderin.  相似文献   

11.
Endothelial cell lineages of the heart   总被引:1,自引:0,他引:1  
During early gastrulation, vertebrate embryos begin to produce endothelial cells (ECs) from the mesoderm. ECs first form primitive vascular plexus de novo and later differentiate into arterial, venous, capillary, and lymphatic ECs. In the heart, the five distinct EC types (endocardial, coronary arterial, venous, capillary, and lymphatic) have distinct phenotypes. For example, coronary ECs establish a typical vessel network throughout the myocardium, whereas endocardial ECs form a large epithelial sheet with no angiogenic sprouting into the myocardium. Neither coronary arteries, veins, and capillaries, nor lymphatic vessels fuse with the endocardium or open to the heart chamber. The developmental stage during which the specific phenotype of each cardiac EC type is determined remains unclear. The mechanisms involved in EC commitment and diversity can however be more precisely defined by tracking the migratory patterns and lineage decisions of the precursors of cardiac ECs. Work carried out by the authors is supported in part by the NIH.  相似文献   

12.
Four types of blood capillaries of the phoronid Phoronopsis harmeri are described. These are capillaries of the tentacles, of the body, of the stomach plexus, and of the vasoperitoneal tissue. The wall of capillary consists of cells of the coelomic lining, a layer of extracellular matrix, and separate endothelial cells. Myoepithelial coelomic cells of tentacle capillaries contain cross-striated fibers. In capillaries of the body and the stomach plexus, the myofilaments are smooth. In the cells of the wall of vasoperitoneal tissue capillaries, myofilaments are lacking. The cells of the vessel wall of the tentacles, the body, and the vasoperitoneal tissue bear a single cilium. The cells of capillaries of the stomach plexus lack a cilium. The ultrastructure of erythrocytes and amebocytes is described. In the cytoplasm of erythrocytes, there is a basal body. It is assumed that erythrocytes originated from the ciliary cells of the wall of the blood vessels.  相似文献   

13.
J Marais 《Acta anatomica》1988,131(3):262-264
The feline gastric microvasculature was studied by corrosion of the injected vascular bed, which allowed evaluation of the vascular pattern of the different tunics. The serosal pattern consisted of numerous interconnected capillary vessels, forming a delicate network. Submucosal arteries supplied the muscular tunic through numerous anastomosing vessels that followed the direction of the smooth muscle fibers. The entire mucosal tunic was supplied by arterioles derived from the submucosal plexus; these gave rise to capillaries that surrounded the gastric glands and terminated in a diffuse, anastomosing subepithelial capillary network. Venules coursed through the mucosa in a perpendicular manner, forming submucosal veins.  相似文献   

14.
Summary The angioarchitecture of the pineal organ of the rainbow trout (Salmo gairdneri) was investigated by means of the corrosion-cast preparation method and scanning electron microscopy. Two main arteries (aa. epiphyseales) supply the pineal parenchyma. They emerge from the aa. cerebri anteriores and run in the fissure between the prosencephalon and the mesencephalon. After entering the pineal stalk, the aa. epiphyseales branch off into several arterioles, most of which extend to the pineal end-vesicle where they give rise to a lobular, bilaterally symmetric capillary network. Capillaries establishing the main portion of the pineal vessels appear widened in comparison to those supplying other portions of the brain and resemble capillaries in other endocrine organs. In Salmo gairdneri, no specialized system of portal vessels appears to exist between the pineal organ and other portions of the brain.  相似文献   

15.
The fine structure of the main dorsal and ventral circulatory trunks and of the subneural vessels and capillaries of the ventral nerve cord of the earthworm, Eisenia foetida, has been studied with the electron microscope. All of these vessels are lined internally by a continuous extracellular basement membrane varying in thickness (0.03 to 1 µ) with the vessel involved. The dorsal, ventral, and subneural vessels display inside this membrane scattered flattened macrophagic or leucocytic cells called amebocytes. These lie against the inner lining of the basement membrane, covering only a small fraction of its surface. They have long, attenuated branching cell processes. All of these vessels are lined with a continuous layer of unfenestrated endothelial cells displaying myofilaments and hence qualifying for the designation of "myoendothelial cells." The degree of muscular specialization varies over a spectrum, however, ranging from a delicate endowment of thin myofilaments in the capillary myoendothelial cells to highly specialized myoendothelial cells in the main pulsating dorsal blood trunk, which serves as the worm's "heart" or propulsive "aorta." The myoendothelial cells most specialized for contraction display well organized sarcoplasmic reticulum and myofibrils with thick and thin myofilaments resembling those of the earthworm body wall musculature. In the ventral circulatory trunk, circular and longitudinal myofilaments are found in each myoendothelial cell. In the dorsal trunk, the lining myoendothelial cells contain longitudinal myofilaments. Outside these cells are circular muscle cells. The lateral parts of the dorsal vessels have an additional outer longitudinal muscle layer. The blood plasma inside all of the vessels shows scattered particles representing the circulating earthworm blood pigment, erythrocruorin.  相似文献   

16.
A mathematical model is developed to study the effect of capillary convection on oxygen transport around segments of arterioles and venules that are surrounded by capillaries. These capillaries carry unidirectional flow perpendicular to the vessel. The discrete capillary structure is distributed in a manner determined by the capillary blood flow and capillary density. A nonlinear oxyhemoglobin dissociation curve described by the Hill equation is used in the analysis. Oxygen flux from the vessel is expressed as a relationship between Sherwood and Peclet numbers, as well as other dimensionless combinations involving parameters of the capillary bed. A numerical solution is obtained with a finite difference method. The numerical results obtained within the physiological range of parameters allow the prediction of longitudinal gradients of hemoglobin-oxygen saturation along the arterioles and venules.  相似文献   

17.
Blood vessels change their caliber to adapt to the demands of tissues or organs for oxygen and nutrients. This event is mainly organized at the capillary level and requires a size-sensing mechanism. However, the molecular regulatory mechanism involved in caliber size modification in blood vessels is not clear. Here we show that apelin, a protein secreted from endothelial cells under the activation of Tie2 receptor tyrosine kinase on endothelial cells, plays a role in the regulation of caliber size of blood vessel through its cognate receptor APJ, which is expressed on endothelial cells. During early embryogenesis, APJ is expressed on endothelial cells of the new blood vessels sprouted from the dorsal aorta, but not on pre-existing endothelial cells of the dorsal aorta. Apelin-deficient mice showed narrow blood vessels in intersomitic vessels during embryogenesis. Apelin enhanced endothelial cell proliferation in the presence of vascular endothelial growth factor and promoted cell-to-cell aggregation. These results indicated that the apelin/APJ system is involved in the regulation of blood vessel diameter during angiogenesis.  相似文献   

18.
Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node-excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor-induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.  相似文献   

19.
The vascularization of the brain and the pituitary region of the Australian lungfish, Neoceratodus forsteri is described from serial section reconstruction. The distal lobe has no direct arterial blood supply and receives blood solely from a pituitary portal system basically similar to that of other sarcopterygians. The primary capillary plexus of the median eminence receives its arterial blood from the infundibular arteries, which on their way distribute some small branches to the prechiasmatic region. The primary plexus also receives capillaries from the adjacent pial hypothalamic plexus. The primary capillary plexus of the median eminence comprises a rostral 'uncovered' and caudal 'covered' part which are not sharply delineated. Distinct portal vessels connect the 'uncovered' rostral part of the primary plexus with the secondary capillary plexus supplying the rostral subdivision of the pars distalis. The 'covered' caudal part of the primary plexus merges into the proximal subdivision of the pars distalis, apparently without formation of distinct portal vessels. The primary plexus has some connections with the plexus intermedius via a hypophysial stem capillary plexus. The plexus intermedius has a substantial arterial supply and gives off capillaries to the parenchyma of the pars intermedia. The adenohypophysis is drained into an unpaired hypophysial vein. The significance of the vascular pathways is discussed from comparative, functional, and evolutionary viewpoints.  相似文献   

20.
Brain derived neurotrophic factor, BDNF, is a neurotrophin best characterized for its survival and differentiative effects on neurons expressing the trk B receptor tyrosine kinase. Although many of these neurons are lost in the BDNF(-)(/)(- )mouse, the early postnatal lethality of these animals suggests a wider function for this growth factor. Here, we demonstrate that deficient expression of BDNF impairs the survival of endothelial cells in intramyocardial arteries and capillaries in the early postnatal period, although the embryonic vasculature can remodel into arteries, capillaries and veins. BDNF deficiency results in a reduction in endothelial cell-cell contacts and in endothelial cell apoptosis, leading to intraventricular wall hemorrhage, depressed cardiac contractility and early postnatal death. Vascular hemorrhage is restricted to cardiac vessels, reflecting the localized expression of BDNF and trk B by capillaries and arterioles in this vascular bed. Conversely, ectopic BDNF overexpression in midgestational mouse hearts results in an increase in capillary density. Moreover, BDNF activation of endogenous trk B receptors supports the survival of cardiac microvascular endothelial cells cultured from neonatal mice. These results establish an essential role for BDNF in maintaining vessel stability in the heart through direct angiogenic actions on endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号