首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

2.
3.
We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.  相似文献   

4.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as α-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, α-internexin and gefiltin. α-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 811–824, 1997  相似文献   

5.
The glycosyl phosphatidylinositol (GPI) lipid anchor, which directs GPI‐anchored proteins to the apical cell surface in certain polarized epithelial cell types, has been proposed to act as an axonal protein targeting signal in neurons. However, as several GPI‐anchored proteins have been found on both the axonal and somatodendritic cell‐surface domains of a variety of neuronal cell types, the role of the GPI anchor in protein localization to the axon remains unclear. To begin to address the role of the GPI anchor in neuronal protein localization, we used a replication‐incompetent retroviral vector to express a model GPI‐anchored protein, human placental alkaline phosphatase (hPLAP), in early postnatal mouse cerebellar granule neurons developing in vitro. Purified granule neurons were cultured in large mitotically active cellular reaggregates to allow retroviral infection of undifferentiated, proliferating granule neuron precursors. To more easily visualize hPLAP localization during the sequence of differentiation of single postmitotic granule neurons, reaggregates were dissociated following infection, plated as high‐density monolayers, and maintained for 1–9 days under serum‐free culture conditions. As we previously demonstrated for uninfected granule neurons developing in monolayer culture, hPLAP‐expressing granule neurons likewise developed in vitro through a series of discrete temporal stages highly similar to those observed in situ. hPLAP‐expressing granule neurons first extended either a single neurite or two axonal processes, and subsequently attained a mature, well‐polarized morphology consisting of multiple short dendrites and one or two axons that extended up to 3 mm across the culture substratum. hPLAP was expressed uniformly on the entire cell surface at each stage of granule neuron differentiation. Thus, it appears that the GPI anchor is not sufficient to confer axonal localization to an exogenous GPI‐anchored protein expressed in a well‐polarized primary neuronal cell type in vitro; other signals, such asthose present in the extracellular domain of these proteins, may be necessary for the polarized targeting or retention of axon‐specific GPI‐anchored proteins. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 119–141, 1999  相似文献   

6.
The pathway of filament assembly from the neuronal intermediate filament α-intermexin was investigated. Optimal assembly occurred in solutions of pH 6.5 to 7 and moderate ionic strength at 37°C. Short filaments formed upon dialysis at 24°C, which elongated further when incubated at 37°C. Soluble forms of α-internexin were characterized by analytical ultracentrifugation and electron microscopy. In 10 mM Tris, pH 8, conditions that favor formation of tetramers and other small oligomers for other intermediate filament proteins, α-internexin formed 10.5 S particles, apparently unit-length half-filaments in the form of rods 10.6 nm in diameter and 68 nm long. Dialysis vs the same buffer with added 10 mM NaCl yielded 16 S rods, probably unit-length filaments, of the same length but 13.0 nm in diameter. At 50 mM NaCl, rods about 13 nm in diameter and heterogeneous in length were observed in electron micrographs, apparently formed from longitudinal annealing of unit-length rods. The results favor a model of assembly in which coiled coil dimers aggregate laterally to form first “unit-length half-filaments” (Herrmann, H., and Aebi, U. (1998)Curr. Opin. Struct. Biol.8, 177–185) and then “unit-length filaments,” which subsequently elongate by annealing.  相似文献   

7.
8.
Neuropilin (previously A5) is a cell surface glycoprotein that was originally identified in Xenopus tadpole nervous tissues. In Xenopus, neuropilin is expressed on both the presynaptic and postsynaptic elements in the visual and general somatic sensory systems, suggesting a role in neuronal cell recognition. In this study, we identified a mouse homologue of neuropilin and examined its expression in developing mouse nervous tissues. cDNA cloning and sequencing revealed that the primary structure of the mouse neuropilin was highly similar to that of Xenopus and that the extracellular segment of the molecule possessed several motifs that were expected to be involved in cell-cell interaction. Immunohistochemistry and in situ hybridization analyses in mice indicated that the expression of neuropilin was restricted to particular neuron circuits. Neuropilin protein was localized on axons but not on the somata of neurons. The expression of neuropilin persisted through the time when axons were actively growing to form neuronal connections. These observations suggest that neuropilin is involved in growth, fasciculation, and targeting for a particular groups of axons. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Norepinephrine has been suggested to play a neurotrophic role during development and is present in the brain as early as embryonic day (E) 12. We have recently demonstrated that the α2A adrenoceptor subtype is widely expressed during times of neuronal migration and differentiation throughout the developing brain. Here, we report the temporal and spatial expression pattern of α2A adrenoceptors in neocortex during late embryonic and early postnatal development using in situ hybridization and receptor autoradiography. Functional α2 receptors in embryonic rat cortex were also detected using agonist stimulated [35S]GTPγS autoradiography. Both α2A mRNA and protein expression were strongly increased by E19 and E20, respectively. The increased expression was in the cortical plate and intermediate and subventricular zones, corresponding to tiers of migrating and differentiating neurons. This transient up‐regulation of α2A adrenoceptors was restricted to the lateral neocortex. At E20, functional α2 adrenoceptors were also detected in deep layers of lateral neocortex. During the first week of postnatal development, the expression of α2A mRNA and protein changed markedly, giving rise to a more mature pattern of anatomical distribution. The temporal and spatial distribution of α2A adrenoceptors in developing neocortex is consistent with expression of functional proteins on migrating and differentiating layer IV to II neurons. These findings suggest that α2A receptors may mediate a neurotrophic effect of norepinephrine during fetal cortical development. The early delineation of the lateral neocortex, which will develop into somatosensory and auditory cortices, suggests an intrinsic regulation of α2A mRNA expression. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 259–269, 1999  相似文献   

10.
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.  相似文献   

11.
Dissociated cell cultures of Xeopus laevis embryonic spinal cord have proved useful for studying the differentiation of neuronal ionic channel and membrane properties and for examining the dynamics of microtubules in developing neurons. To examine their usefulness for studying neurofilaments in developing neurites, we prepared similar cultures from stage 22 embryos. Between 3 and 55 h after plating, these cultures were fixed and immunostained with antibodies directed against various epitopes of neurofilament proteins from X. Laevis. These antibodies were specific for nonphosphorylated epitopes of the two low molecular weight Xenopus neurofilament proteins (Xenopus NF-L and the Xenopus neuronal intermediate filament protein, XNIF), both phosphorylated and nonphosphorylated epitopes of the Xenopus middle molecular weight neurofilament protein (NF-M), and a nonphosphorylated epitope of the Xenopus high molecular weight neurofilament protein (NF-H). The emergence of these neurofilament proteins in culture was compared to the time course previously reported for them in Xenopus spinal cord neurons in situ. To facilitate the comparison of times in culture to developmental stages, the age of cultured neurons was converted to an equivalent Nieuwkoop and Faber normal stage using data presented here on the effect of changing temperature on developmental rates of X. laevis. With the exception of the nonphosphorylated epitope of NF-H, which is indicative of the most mature axons found in situ. the emergence of the other neurofilament protein antibody epitopes closely paralleled that previously reported for these antibodies in situ. Thus, with respect to XNIF, NF-M, and NF-L, the neurities of cultured neurons were typical of young embryonic Xenopus laevis spinal cord axons. This system should prove useful for studying both the function of these neurofilament proteins during the early stages of axonal development and the dynamics of their transport. 1994 John Wiley & Sons, Inc.  相似文献   

12.
Mutations in P/Q‐type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T‐type calcium channels in thalamus are observed in P/Q‐type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T‐type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q‐type calcium channel mutation. We investigated changes in T‐type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real‐time polymerase chain reaction (qRT‐PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT‐PCR analysis showed no change in T‐type calcium channel α1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in α1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in α1G expression in the leaner cerebellum, where the granule cell layer showed decreased α1G expression while Purkinje cells showed increased α1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT‐PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased α1G expression and the leaner Purkinje cell layer showed increased α1G expression. These results suggest that differential expression of T‐type calcium channels in the leaner cerebellum may be involved in the observed movement disorders. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

13.
14.
15.
16.
Tissue plasminogen activator (tPA) mRNA was localized in the developing cerebellum and the potentials role of tPA in migration of cerebellar granule cells was investigated. Proteolytic assays and Northern blots showed little variation in levels of tPA proteolytic activity or tPA mRNA expression in the developing cerebellum. The distribution of cerebellar tPA mRNA at different ages was visualized by in situ hybridization histochemistry. At postnatal day 7 (P7), most labeled cells were in the internal granule layer or developing white matter, and very few if any premigratory granule cells contained tPA mRNA. Although the molecular layer contained labeled cells at all ages, cell counts indicated that a greater percentage of cells in the molecular layer contained tPA mRNA during adulthood than during the period of granule cell migration. The most striking change in tPA mRNA expression was in Purkinje neurons, most of which began to express tPA mRNA between P7 and P14. The potential role of tPA in granule cell migration was investigated by performing migration assays in cerebellar slice explants in the presence or absence of protease inhibitors. The presence of inhibitors did not affect the distance that granule cells migrated. Data in the present study do not support a role for tPA in granule neuron migration; however, they do indicate that tPA is both spatially and temporally regulated during cerebellar development. Possible functions of tPA in the cerebellum are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
18.
The β4-and β10-thymosins, recently identified as actin monomer-sequestering proteins, are developmentally regulated in brain. Using specific mRNA and protein probes, we have used in situ hybridization and immunohis-tochemical techniques to investigate the distribution of the β-thymosin mRNAs and their proteins in developing rat cerebellum. Early in postnatal development, both β-thymosin mRNAs were expressed at highest levels in the postmitotic, premigratory granule cells of the external granular layer; expression diminished as granule cells migrated to and differentiated within the developing internal granular layer. In addition, both β-thymosin proteins were present in bundles of cerebellar afferent fibers in the white matter at this time. Throughout the maturation period, both proteins were present in elongating parallel fibers in the upper portion of the molecular layer. Later in cerebellar development, thymosin β4, but not thymosin β10, was expressed in Golgi epithelial cells and Bergmann processes. Thymosin β4 was expressed in a small population of cells with microglial morphology scattered throughout the gray and white matter. Thymosin β10 was detected in an even smaller population of glia. Expression of thymosin β4 and thymosin β10 in premigratory granule cells and in growing neuronal processes is consistent with the possibility that both β-thymosins are involved in the dynamics of actin polymerization during migration and process extension of neurons.  相似文献   

19.
Axon formation in developing cerebellar granule neurons in situ is spatially and temporally segregated from subsequent neuronal migration and dendrite formation. To examine the role of local environmental cues on early steps in granule cell differentiation, the sequence of morphologic development and polarized distribution of membrane proteins was determined in granule cells isolated from contact with other cerebellar cell types. Granule cells cultured at low density developed their characteristic axonal and dendritic morphologies in a series of discrete temporal steps highly similar to those observed in situ, first extending a unipolar process, then long, thin bipolar axons, and finally becoming multipolar, forming short dendrites around the cell body. Axonal- and dendritic-specific cytoskeletal markers were segregated to the morphologically distinct domains. The cell surface distribution of a specific class of endogenous glycoproteins, those linked to the membrane by a glycosylphosphatidyl inositol (GPI) anchor, was also examined. The GPI-anchored protein, TAG-1, which is segregated to the parallel fiber axons in situ, was found exclusively on granule cell axons in vitro; however, two other endogenous GPI-anchored proteins were found on both the axonal and somatodendritic domains. These results demonstrate that granule cells develop polarity in a cell type-specific manner in the absence of the spatial cues of the developing cerebellar cortex. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 223–236, 1997.  相似文献   

20.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein predominantly expressed in cells of astroglial origin. To allow for the study of the biological functions of GFAP we have previously generated GFAP-negative mice by gene targeting [Peknyet al.(1995)EMBO J.14, 1590–1598]. Astrocytes in culture, similar to reactive astrocytesin vivo,express three intermediate filament proteins: GFAP, vimentin, and nestin. Using primary astrocyte-enriched cultures from GFAP-negative mice, we now report on the effect of GFAP absence on (i) the synthesis of other intermediate filament proteins in astrocytes, (ii) intermediate filament formation, (iii) astrocyte process formation (stellation) in response to neurons in mixed cerebellar astrocyte/neuron cultures, and (iv) saturation cell densityin vitro.GFAP−/− astrocytes were found to produce both nestin and vimentin. At the ultrastructural level, the amount of intermediate filaments as revealed by transmission electron microscopy was reduced in GFAP−/− astrocytes compared to that in GFAP+/+ astrocytes. GFAP−/− astrocytes retained the ability to form processes in response to neurons in mixed astrocyte/neuron cultures from the cerebellum. GFAP−/− astrocyte-enriched primary cultures exhibited an increased final cell saturation density. The latter leads us to speculate that the loss of GFAP expression observed focally in a proportion of human malignant gliomas may reflect tumor progression toward a more rapidly growing and malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号