首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans have been implicated in the clustering of acetylcholine receptors (AChRs) on cultured myotubes and at the neuromuscular junction. We report that the presence of chondroitin sulfate is associated with the ability of cultured myotubes to form spontaneous clusters of AChRs. Three experimental manipulations of wild type C2 cells in culture were found to affect both glycosaminoglycans (GAGs) and AChR clustering in concert. Chlorate was found to have dose-dependent negative effects both on GAG sulfation and on the frequency of AChR clusters. When extracellular calcium was raised from 1.8 to 6.8 mM in cultures of wild-type C2 myotubes, increases were observed both in the level of cell layer-associated chondroitin sulfate and in the frequency of AChR clusters. Culture of wild-type C2 myotubes in the presence of chondroitinase ABC eliminated cell layer-associated chondroitin sulfate while leaving heparan sulfate intact and simultaneously prevented the formation of AChR clusters. Treatment with either chlorate or chondroitinase inhibited AChR clustering only if begun prior to the spontaneous formation of clusters. We propose that chondroitin sulfate plays an essential role in the initiation of AChR clustering and in the early events of synapse formation on muscle. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Glycosaminoglycan variants in the C2 muscle cell line   总被引:8,自引:0,他引:8  
Using a replica technique, we have isolated and characterized five genetic variants of the C2 mouse muscle cell line that are defective in incorporation of radiolabeled sulfate into glycosaminoglycans (GAGs). The variants incorporate free sulfate into GAGs at 5-20% of wild-type levels. None of the variants is defective in sulfate transport across the cell membrane, and in no case could the deficit in incorporation of sulfate be reversed by addition of an artificial initiator of GAG biosynthesis, p-nitrophenyl beta-D-xyloside. Analysis of the incorporation of [3H]glucosamine into GAGs by the variants revealed three different patterns: one variant incorporated [3H]glucosamine at the wild-type level; one, S27, at a severely reduced level; and three at intermediate levels. Four of the five variants showed marked deficits in their ability to differentiate and fuse. The remaining variant, S27, formed multinucleated myotubes and expressed acetylcholine receptor with a normal time course. Differentiation of the first four variants could not be restored by addition of exogenous GAGs or extracellular matrix. Because of the important roles that GAGs and proteoglycans are thought to play in the differentiation of muscle, these genetic variants should serve as useful tools in functional analyses of these molecules.  相似文献   

3.
Abstract: Experiments on the S27 cell line, a variant of the C2 mouse muscle cell line that shows reduced incorporation of 35SO4 into proteoglycans, suggest that proteoglycans play a role in the clustering of acetylcholine receptors, an early step in synaptogenesis. Thus, unlike the C2 line, S27 myotubes do not form acetylcholine receptor clusters on their surface in aneural cultures and form few clusters in response to agrin. We have examined the proteoglycans synthesized by S27 myotubes to define further the biochemical defect in these cells. Gel filtration analysis of radiolabeled proteoglycans synthesized by C2 and S27 myotubes shows that both cell types express a similarly polydisperse complement of proteoglycans. Both radiolabeled heparan sulfate proteoglycans and chondroitin/dermatan sulfate proteoglycans are reduced in S27 myotubes, with the chondroitin/dermatan sulfate proteoglycans showing a distinct reduction in size. The core protein of perlecan, a major proteoglycan species in muscle, was present in S27 cells and unaltered in electrophoretic mobility. Thus a principal deficiency in S27 cells appears to be a defect in glycosaminoglycan chain elongation.  相似文献   

4.
Normal human keratinocytes (NHK) were cultured in serum-free medium, containing low (0.1 mM) or high (2 mM) calcium, to obtain proliferating and differentiating cultures, respectively. Proteoglycan (PG) synthesis of proliferating and differentiating NHK was investigated. Cultures were labeled with 35S-sulfate, and the PGs were extracted from medium and cell layer. The newly synthesized PGs were isolated by ion-exchange chromatography on a column of DEAE-Sephacel. The molecular properties of the PGs and the size and composition of glycosaminoglycans (GAGs) were determined. In general, the PGs are relatively small size (Mr 70,000-120,000). The PGs of proliferating cultures are larger in molecular size than the PGs of differentiating cultures, and this is due to the degradation of the GAG chains. The molecular weight of the GAG chains of proliferating NHK ranged from 4,800 to 22,000, and the range for GAGs from differentiating cultures varied from 2,800 to 9,600. By compositional analysis, these PGs proved to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate as determined by nitrous acid degradation, and chondroitinase ACII and ABC digestion. No significant differences were found in the overall GAG composition of the medium secreted PGs of proliferating and differentiating cultures. In contrast, cell-associated PGs of differentiating cells had higher levels of heparan sulfate than those of proliferating cells.  相似文献   

5.
Proteoglycans (PGs) are important components of the skeletal muscle extracellular matrix (ECM). Skeletal muscles are composed of muscle fibers and mononucleated cells. The latter are known to synthesize and secrete several PGs. Rat skeletal muscle ECM contains a chondrotin/dermatan sulfate PG which was immunoprecipitated by antibodies against rat decorin. The synthesis and secretion of PGs by a mouse cell line was analyzed during in vitro differentiation. PGs were characterized by biochemical and immunological techniques including immunocytolocalization experiments. At least three different PGs are synthesized and secreted by differentiated myotubes: a 220 to 460 kDa heparan sulfate, a 250 to 310 kDa chondroitin/dermatan sulfate, and a 75 to 130 kDa chondroitin/dermatan sulfate. This latter PG was specifically immunoprecipitated with antibodies against rat fibroblast decorin. Indirect immunocytolocalization analysis revealed that decorin was localized inside the cells, with a strong reaction around the nuclei. During differentiation the relative proportions of some PGs changed. Thus, a decrease in the relative proportion of the heparan sulfate PG was observed, whereas a significant increase in the relative proportion of decorin was detected. No change in the large chondroitin/dermatan PG was seen during the differentiation process. The possible cell sources of decorin found in rat skeletal muscle ECM are discussed.  相似文献   

6.
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.  相似文献   

7.

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.

  相似文献   

8.
9.
Role of proteoglycans in renal development   总被引:6,自引:0,他引:6  
The role of proteoglycans (PGs) in morphogenesis was investigated. Fetal kidneys were obtained from 13-day-old mouse embryos and maintained for 7 days in culture. The biosynthesis of PGs was perturbed by addition of p-nitrophenyl-beta-D-xylopyranoside in the culture medium. The kidneys were processed for morphological and biochemical studies. The morphological studies included staining of tissues with anti-basement membrane antibodies and ruthenium red. [35S]sulfate was used as the precursor product for biosynthetic and autoradiographic studies. The kidneys treated with xyloside had loose mesenchyme, inhibition of ureteric bud branching, diminution in the population of developing nephron elements, decreased immunofluorescence with anti-proteoglycan antibodies and staining with ruthenium red, and a reduced [35S]sulfate incorporation into poorly organized extracellular matrices. The biochemical studies included characterization of PGs/glycosaminoglycans (GAGs) by Sepharose CL-4B, -6B, and DEAE-Sephacel chromatographies and cellulose acetate electrophoresis. Under the influence of xyloside, the total radioactivities decreased 2 to 4-fold in tissues and increased 18 to 42-fold in media fractions. A reduction in the size of macromolecular form of PGs, i.e., from MW approximately 2.5 X 10(6) to approximately 2.5 X 10(4), was noted. The PGs/GAGs synthesized were mainly made up of heparan sulfate and small amounts of chondroitin sulfate. They eluted at a lower salt concentration as compared to the controls. A similar diminution in the size of media PGs, i.e., from MW approximately 1.8 X 10(5) to approximately 2.8 X 10(4), was observed. Additional studies with [3H]xyloside indicated that the chains initiated on xyloside residues were similar in size and composition to GAG-chains. These findings indicate that a perturbance in the biosynthesis of PGs/GAGs leads to abnormalities in renal organogenesis.  相似文献   

10.
11.
糖胺聚糖是一类直链酸性多糖,具有优良的生物相容性和生理活性,被广泛应用于临床治疗,并用作药物运输载体,其中透明质酸、 肝素和硫酸软骨素的相关研究最为深入。由于传统方式(如动物组织提取法等)制备糖胺聚糖,存在外毒素、病毒等致病因子污染的风 险,因而,利用合成生物学技术,构建重组工程菌株生产糖胺聚糖,逐渐受到研究者们的重视。主要围绕透明质酸、肝素前体及软骨素, 综述糖胺聚糖的生物合成途径,并探讨产糖胺聚糖基因工程菌的构建以及糖胺聚糖生物合成过程中分子质量调控机制,以期为构建产高 品质糖胺聚糖工程菌株提供新思路。  相似文献   

12.
Glycosaminoglycan-lipoprotein interaction   总被引:1,自引:0,他引:1  
Glycosaminoglycans (GAGs) bound to various proteoglycans (PGs) present in the cardiovascular system have been proposed to perform a wide range of functions. These include conferring viscoelastic properties; interacting with and modulating growth factors and enzymes; and as receptors and co-receptors in lipoprotein metabolism. Binding of apoB-100 lipoproteins, particularly low density lipoproteins (LDL), to GAGs of extracellular matrix PGs in arteries has been proposed to be an initiating event in development of atherosclerosis. This study was initiated with the aim of getting an overview of the binding patterns of different lipoprotein subclasses with individual GAG categories. We thus evaluated the interaction of lipoproteins with GAGs commonly found in the cardiovascular system using a gel mobility-shift assay developed for this purpose. The same procedure was used to measure lipoproteins binding to metabolically [(35)S]-labeled whole PGs prepared from three cell types, arterial smooth muscle cells, THP-1 macrophages and from HepG2 cells. The effect of GAG composition on PGs on lipoprotein binding was evaluated by enzymatic degradation of the carbohydrate chains. Heparan sulfate was found to bind beta very low density lipoproteins (beta-VLDL) and a chylomicron remnant model (beta-VLDL+apoE), but not LDL. Dermatan sulfate was found to bind LDL, but not beta-VLDL or the chylomicron remnant model. Chondroitin sulfate and heparin were found to bind all lipoproteins tested (LDL, beta-VLDL and beta-VLDL+apoE) although with different affinities. We can conclude that each lipoprotein subclass tested binds a specific assortment of the GAGs tested. The observations made contribute to the understanding of new and complex mechanisms by which carbohydrate and lipid metabolism may be linked.  相似文献   

13.
: In Mollusca, the mantle produces an organic matrix that mineralizes in time to make shell. Primary mantle cell cultures from the nacreous gastropod Haliotis tuberculata have been established as useful experimental model to investigate in vitro synthesis of both proteoglycans/glycosaminoglycans (PGs/GAGs) and collagen. First, we tested different enzymatic digestion procedures to find the method that gives the highest percentage of viable and adherent cultured cells. Enzymatic digestion with 0.1% pronase plus 0.1% collagenase was routinely used. Six days after the initiation of culture, about 80% of cells were viable, among which 20% were adherent as quantified by the MTT reduction assay. In addition, the protein synthesis estimated by [3H]leucine incorporation remained constant during this period. For the first time, we demonstrated a de novo synthesis of PGs/GAGs and collagen in primary cultures of mantle cells. After 48 hours of labeling, among the [3H]-d-glucosamine macromolecules synthesized, [3H]PGs/GAGs represented 43%, divided into 45% heparan sulfate, 37% chondroitin/dermatan sulfate, and 6% hyaluronic acid. Early elution on anion-exchange chromatography of these PGs/GAGs indicated that most of them appeared as undersulfated GAG molecules. De novo synthesis of collagen represents 4.52% - 0.84% (SD) with respect to the total protein synthesis. Such a model will facilitate studies on the synthesis of PGs/GAGs and collagen as components of the extracellular matrix and its regulation in Mollusca. Both PGs/GAGs and collagen participate in molecular events that regulate cell adhesion, migration, and proliferation. Further studies with this type of in vitro model should provide knowledge about novel aspects of molluscan cell signaling, in relation to extracellular matrix components.  相似文献   

14.
During organ differentiation, cell-extracellular matrix (ECM) interactions are required. The components of the ECM, such as glycosaminoglycans, fibronectin, laminin, and collagens, change in relation to cytokine and enzyme activity. Moreover, glycosaminoglycans (GAGs) are components of the ECM that play an important role in both cytokine regulation and cell activities. In this work we studied the accumulation of hyaluronic acid and chondroitin sulfate and heparan sulfate proteoglycans (PGs), beta-N-acetyl-D-glucosaminidase activity, the presence of transforming growth factor beta(2) (TGF beta(2)), and interleukin-1 (IL-1), and the localization of fibronectin, laminin, and collagen I and IV during the early stages of chick embryo lung development. We also determined the levels of hyaluronic acid, chondroitin sulfate, dermatan sulfate, and heparan sulfate GAGs and the activity of beta-N-acetyl-D-glucosaminidase with biochemical methods. Our data show that beta-N-acetyl-D-glucosaminidase activity increases in each cell, especially in the epithelial growth front at the emergence of each bronchial bud, where hyaluronic acid and IL-1 are located in the surrounding mesenchymal areas. Chondroitin sulfate and heparan sulfate PGs, fibronectin, laminin, and collagen I and IV are evident in the area near the basal membrane along the sides where the forming structures are stabilized. Biochemical data show that beta-N-acetyl-D-glucosaminidase activity increases in cells during lung development and is related to GAG decrease and to modifications of the nonsulfated/sulfated GAG ratio. These modifications could change cytokine activity and play an important role in bronchial branching development.  相似文献   

15.
Proteoglycans (PGs) are composed of a protein moiety and a complex glycosaminoglycan (GAG) polysaccharide moiety. GAG chains are responsible for various biological activities. GAG chains are covalently attached to serine residues of the core protein. The first step in PG biosynthesis is xylosylation of certain serine residues of the core protein. A specific linker tetrasaccharide is then assembled and serves as an acceptor for elongation of GAG chains. If the production of endogenous GAG chains is selectively inhibited, one could determine the role of these endogenous molecules in physiological and developmental functions in a spatiotemporal manner. Biosynthesis of PGs is often blocked with the aid of nonspecific agents such as chlorate, a bleaching agent, and brefeldin A, a fungal metabolite, to elucidate the biological roles of GAG chains. Unfortunately, these agents are highly lethal to model organisms. Xylosides are known to prime GAG chains. Therefore, we hypothesized that modified xylose analogs may able to inhibit the biosynthesis of PGs. To test this, we synthesized a library of novel 4-deoxy-4-fluoroxylosides with various aglycones using click chemistry and examined each for its ability to inhibit heparan sulfate and chondroitin sulfate using Chinese hamster ovary cells as a model cellular system.  相似文献   

16.
Sulfation and desulfation of total glycosaminoglycans (GAG) as well as of chondroitin sulfates (A + C), dermatan sulfate, and heparan sulfate were quantified in the developing cerebrum and cerebellum of mice by labeling with [35S]sulfate combined with chases started 24 hr after [35S]sulfate injection. In both the developing cerebrum and cerebellum, the rate of biosynthesis of total sulfated GAG was highest shortly after birth (2 days), decreased sharply thereafter, and reached a plateau after 14 days. The biosynthetic activities of chondroitin sulfates and heparan sulfate decreased sharply up to 14 days and retained constant levels afterward. By contrast, the rates of biosynthesis of dermatan sulfate increased up to 14 days. The biodegradation rates of total sulfated GAG as well as of chondroitin sulfates, heparan sulfate, and dermatan sulfate were strongly correlated with the corresponding rates of biosynthesis during the first 2 postnatal weeks. Total and individual sulfated GAG showed high degradation rates resulting in half-life times of a few hours up to 1 1/2 days. Thus sulfated GAG are synthesized in excess and the actual net content seems to be co-regulated to a high degree by lysosomal degradation. In both brain parts, a proportional increase of the sulfated GAG content vs the total GAG content from 40% at birth to 90% at 28 days was observed. Since during development heparan sulfate and dermatan sulfate manifested a relative increase in their daily net synthesis besides a decrease of chondroitin sulfates, a developmental increase of the sulfate groups linked to GAG is evidenced. This molecular differentiation resulting in microenvironmental changes may be of high functional significance.  相似文献   

17.
Endothelin-1 (ET-1) is the most potent vasoconstrictor peptide found in nature. Its production is stimulated by thrombin. By inhibiting thrombin we have previously shown that heparin, a highly negatively-charged glycosaminoglycan (GAG), suppresses the production of ET-1 by cultured human umbilical vein endothelial cells (HUVEC). The purpose of our study is to determine the effect of other GAGs and related compounds on ET-1 production. The GAGs and related compounds used in the study were: chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, fucoidin, low molecular weight dextran sulfate, high molecular weight dextran sulfate, and hyaluronan. HUVEC were incubated for 48 hr with media containing these GAGs and related compounds and with media without GAG as control. ET-1 levels were measured by radioimmunoassay. GAGs and related molecules with higher sulfate content, heparin, chondroitin sulfate B, low and high molecular weight dextran sulfates significantly suppressed ET-1 production by HUVEC. Fucoidin also suppressed ET-1 production despite its lower sulfate content, probably because of its structural similarity to heparin. These compounds may be useful for future in vivo studies.  相似文献   

18.
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG–ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.  相似文献   

19.
Proteoglycans (PGs) are critically involved in major cellular processes. Most PG activities are due to the large interactive properties of their glycosaminoglycan (GAG) polysaccharide chains, whose expression and fine structural features are tightly controlled by a complex and highly regulated biosynthesis machinery. Xylosides are known to bypass PG-associated GAG biosynthesis and prime the assembly of free polysaccharide chains. These are, therefore, attractive molecules to interfere with GAG expression and function. Recently, we have developed a new xyloside derivative, C-Xyloside, that shares classical GAG-inducing xyloside activities while exhibiting improved metabolic stability. We have previously shown that C-Xyloside had beneficial effects on skin homoeostasis/regeneration using a number of models, but its precise effects on GAG expression and fine structure remained to be addressed. In this study, we have therefore investigated this in details, using a reconstructed dermal tissue as model. Our results first confirmed that C-Xyloside strongly enhanced synthesis of GAG chains, but also induced significant changes in their structure. C-Xyloside primed GAGs were exclusively chondroitin/dermatan sulfate (CS/DS) that featured reduced chain size, increased O-sulfation, and changes in iduronate content and distribution. Surprisingly, C-Xyloside also affected PG-borne GAGs, the main difference being observed in CS/DS 4-O/6-O-sulfation ratio. Such changes were found to affect the biological properties of CS/DS, as revealed by the significant reduction in binding to Hepatocyte Growth Factor observed upon C-Xyloside treatment. Overall, this study provides new insights into the effect of C-Xyloside on GAG structure and activities, which opens up perspectives and applications of such compound in skin repair/regeneration. It also provides a new illustration about the use of xylosides as tools for modifying GAG fine structure/function relationships.  相似文献   

20.
To characterize the sulfated proteoglycans (PGs) alterations associated with malignant transformation of epithelial cells in vitro, the localization, charge, size, and composition of cell-associated and secreted sulfated PGs have been compared in rabbit renal proximal-tubule cells in primary culture (Ronco et al., 1990) and in a derived SV-40 transformed cell line (RC.SV1) exhibiting a proximal phenotype and high tumor-inducing ability (Vandewalle et al., 1989). Both normal and transformed cells incorporated PGs into a thick basement membrane layer as shown by ruthenium red staining and immunodetection with a monoclonal antibody raised against the core protein of the bovine basement membrane heparan sulfate-PG (HS-PG). In primary cultures of normal cells, cell-associated PGs were almost identical to those extracted from renal tubule fractions in vivo by their size (Kav = 0.27 vs. 0.26 on Sepharose CL-6B) and composition characterized by the exclusive presence of heparan sulfate glycosaminoglycan (HS-GAG) chains. In addition, the cells secreted a HS-PG with similar biochemical characteristics (Kav = 0.29; 100% HS-GAG chains). The SV-40-transformed RC.SV1 cells also synthesized and secreted a unique PG with the same charge and Kav values and apparently the same core protein (35 kDa) as in nontransformed cells, but three major differences were observed: (i) an increased proportion of PG-associated [35S]sulfate radioactivity released into the culture medium (36 vs. 21%), (ii) the emergence of free GAG chains unincorporated into PGs and detected only in the cell-associated fraction, and (iii) a dramatic change in the composition of GAG chains in which chondroitin sulfate replaced heparan-sulfate. The latter finding is in keeping with the known chondroitin sulfate increase and heparan-sulfate decrease in epithelial tumors. The alterations of PGs observed in this study may play a role in the acquisition and/or maintenance of the malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号