首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
突变体p53研究进展   总被引:4,自引:0,他引:4  
李大虎  张令强  贺福初 《遗传》2008,30(6):697-703
抑癌基因突变是癌症发生过程中一个极为关键的事件。p53作为体内最重要的抑癌基因之一, 在人类癌症中发生突变的频率高达50%。同时, p53突变也是人类遗传病Li-Fraumeni综合征的主要病因。p53最常见的突变形式是错义突变, 所形成的突变体p53不但失去了野生型p53的抑癌功能, 而且还获得了一系列类似于癌基因的功能, 促进了肿瘤的进程。文章拟对突变体p53的结构功能改变, 获得癌基因活性的分子机制, 以及近年来对封闭突变体p53活性所进行的探索等研究方向所取得的进展做一综述。  相似文献   

2.
3.
4.
5.
6.
Two faces of p53: aging and tumor suppression   总被引:7,自引:1,他引:6  
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.  相似文献   

7.
8.
Regulation of mutation rates is critical for maintaining genome stability and controlling cancer risk. A special challenge to this regulation is the presence of multiple mutagenic DNA polymerases in mammals. These polymerases function in translesion DNA synthesis (TLS), an error-prone DNA repair process that involves DNA synthesis across DNA lesions. We found that in mammalian cells TLS is controlled by the tumor suppressor p53, and by the cell cycle inhibitor p21 via its PCNA-interacting domain, to maintain a low mutagenic load at the price of reduced repair efficiency. This regulation may be mediated by binding of p21 to PCNA and via DNA damage-induced ubiquitination of PCNA, which is stimulated by p53 and p21. Loss of this regulation by inactivation of p53 or p21 causes an out of control lesion-bypass activity, which increases the mutational load and might therefore play a role in pathogenic processes caused by genetic instability.  相似文献   

9.
BRCA1 is a tumor suppressor gene linked to familial breast and ovarian cancer. The BRCA1 protein has been implicated in a diverse set of cellular functions, including activation of gene expression by the p53 tumor suppressor and control of homologous recombination (HR) during DNA repair. Prior reports have demonstrated that BRCA1 can exist in cells in a complex with the BRG1-based SWI/SNF ATP-dependent chromatin remodeling enzymes and that SWI/SNF components contribute to p53-mediated gene activation. To investigate the link between SWI/SNF function and BRCA1 mediated effects on p53-mediated gene activation and on mechanisms of homologous recombination, we have utilized mammalian cells that inducibly express an ATPase-deficient, dominant negative SWI/SNF enzymes. Mutant SWI/SNF ATPases retain the ability to interact with BRCA1 in cells. We report that expression of dominant negative SWI/SNF enzymes does not affect p53-mediated induction of the p21 cyclin dependent kinase inhibitor or the Mdm2 E3 ubiquitin ligase that regulates p53 in cells exposed to UV or gamma irradiation. Similarly, integration of a reporter that monitors homologous recombination by gene conversion into these cells demonstrated no change in the recombination rate in the absence of functional SWI/SNF enzyme. We conclude that the SWI/SNF chromatin remodeling enzymes may contribute to but are not required for these processes.  相似文献   

10.
11.
12.
13.
14.
15.
生长抑制因子(inhibitor of growth,ING)家族成员是候选的抑癌基因.ING蛋白参与磷脂酰肌醇介导的脂类信号转导通路及激素介导的通路,能够与组蛋白乙酰转移酶、去乙酰化酶等结合参与染色质的重构,调节基因的转录,与p53协同作用,抑制细胞生长,诱导细胞凋亡和DNA损伤修复.ING家族成员通过对基因表达的表观遗传学调控将细胞周期、细胞凋亡和衰老等生物学过程有机联系起来.  相似文献   

16.
The tumour suppressor p53 prevents tumour formation after DNA damage by halting cell cycle progression to allow DNA repair or by inducing apoptotic cell death. Loss of wild-type p53 function renders cells resistant to DNA damage-induced cell cycle arrest and ultimately leads to genomic instabilities including gene amplifications, translocations and aneuploidy. Some of these chromosomal lesions are based on mechanisms that involve recombinatorial events. Here we report that p53 physically interacts with key factors of homologous recombination: the human RAD51 protein and its prokaryotic homologue RecA. In vitro, wild-type p53 inhibits defined biochemical activities of RecA protein, such as three-way DNA strand exchange and single strand DNA-dependent ATPase activity. In vivo, temperature-sensitive p53 forms complexes with RAD51 only in wild-type but not in mutant conformation. These observations suggest that functional wild-type p53 may select directly the appropriate pathway for DNA repair and control the extent and timing of the production of genetic variation via homologous recombination. Gene amplification an other types of chromosome rearrangements involved in tumour progression might occur not only as result of inappropriate cell proliferation but as a direct consequence of a defect in p53-mediated control of homologous recombination processes due to mutations in the p53 gene.  相似文献   

17.
The promise and obstacle of p53 as a cancer therapeutic agent   总被引:1,自引:0,他引:1  
p53 is a tumor suppressor gene that is mutated in greater than 50% of human cancers. The action of p53 as a tumor suppressor involves inhibition of cell proliferation through cell cycle arrest and/or apoptosis. Loss of p53 function therefore allows the uncontrolled proliferation associated with cancerous cells. While design of most anti-cancer agents has focused on targeting and inactivating cancer promoting targets, such as oncogenes, recent attention has been given to restoring the lost activity of tumor suppressor genes. Because the loss of p53 function is so prevalent in human cancer, this protein is an ideal candidate for such therapy. Several gene therapeutic strategies have been employed in the attempt to restore p53 function to cancerous cells. These approaches include introduction of wild-type p53 into cells with mutant p53; the use of small molecules to stabilize mutant p53 in a wild-type, active conformation; and the introduction of agents to prevent degradation of p53 by proteins that normally target it. In addition, because mutant p53 has oncogenic gain of function activity, several approaches have been investigated to selectively target and kill cells harboring mutant p53. These include the introduction of mutant viruses that cause cell death only in cells with mutant p53 and the introduction of a gene that, in the absence of functional p53, produces a toxic product. Many obstacles remain to optimize these strategies for use in humans, but, despite these, restoration of p53 function is a promising anti-cancer therapeutic approach.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号