首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
The synthesis of nitric oxide (NO) is limited by the intracellular availability of L-arginine. Here we show that stimulation of NMDA receptors promotes an increase of intracellular L-arginine which supports an increase in the production of NO. Although L-[3H]arginine uptake measured in cultured chick retina cells incubated in the presence of cycloheximide (CHX, a protein synthesis inhibitor) was inhibited approximately 75% at equilibrium, quantitative thin-layer chromatography analysis showed that free intracellular L-[3H]arginine was six times higher in CHX-treated than in control cultures. Extracellular L-[3H]citrulline levels increased threefold in CHX-treated groups, an effect blocked by NG-nitro-L-arginine, a NO synthase (NOS) inhibitor. NMDA promoted a 40% increase of free intracellular L-[3H]arginine in control cultures, an effect blocked by the NMDA antagonist 2-amino 5-phosphonovaleric acid. In parallel, NMDA promoted a reduction of 40-50% in the incorporation of 35[S]methionine or L-[3H]arginine into proteins. Western blot analysis revealed that NMDA stimulates the phosphorylation of eukaryotic elongation factor 2 (eEF2, a factor involved in protein translation), an effect inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK801). In conclusion, we have shown that the stimulation of NMDA receptors promotes an inhibition of protein synthesis and a consequent increase of an intracellular L-arginine pool available for the synthesis of NO. This effect seems to be mediated by activation of eEF2 kinase, a calcium/calmodulin-dependent enzyme which specifically phosphorylates and blocks eEF2. The results raise the possibility that NMDA receptor activation stimulates two different calmodulin-dependent enzymes (eEF2 kinase and NOS) reinforcing local NO production by increasing precursor availability together with NOS catalytic activity.  相似文献   

2.
目的和方法:本研究采用离子探针Fura2/AM 结合计算机图象分析技术,并通过施加NO合酶抑制剂LNNA和NO的作用靶———鸟苷酸环化酶(GC)的抑制剂美兰(Methylene Blue;MB),观察经培养的大鼠大脑皮层微血管内皮细胞和平滑肌细胞中的[Ca2+]i 在低氧作用后的变化以及与有关血管舒张因子NO和cGMP之间的关系。结果:低氧时大脑微血管内皮细胞和平滑肌细胞内的Ca2+ 浓度有所下降,变化幅度的大小与低氧的程度及低氧作用的时间有关,且可以被LNNA和MB所抑制。结论:低氧时大脑微血管的舒张反应与NO的产生有关,NO通过细胞内的多种机制,最终使得胞内Ca2+ 下降而导致血管舒张  相似文献   

3.
To examine the intracellular signaling mechanism of NO in ischemic myocardium, isolated working rat hearts were made ischemic for 30 min followed by 30 min of reperfusion. A separate group of hearts were pre-perfused with 3 mM L-arginine in the presence or absence of 650 M of protoporphyrin, a heme oxygenase inhibitor for 10 min prior to ischemia. The release of NO was monitored using an on-line amperometric sensor placed into the right atrium. The aortic flow and developed pressure were examined to determine the effects of L-arginine on ischemic/reperfusion injury. Induction for the expression of heme oxygenase was studied by Northern hybridization. For signal transduction experiments, sarcolemmal membranes were radiolabeled by perfusing the isolated hearts with [3H] myoinositol and [14C] arachidonic acid. Biopsies were processed to determine the isotopic incorporation into various phosphoinositols as well as phosphatidic acid and diacylglycerol. cGMP was assayed by radioimmunoassay and SOD content was determined by enzymatic analysis. The release of NO was diminished following ischemia and reperfusion and was augmented by L-arginine. L-arginine reduced ischemic/reperfusion injury as evidenced by the enhanced myocardial functional recovery. Protoporphyrin modulated the effects of L-arginine. cGMP, which was remained unaffected by ischemia and reperfusion, was stimulated significantly after L-arginine treatment. The NO-mediated augmentation of cGMP was reduced by protoporphyrin suggesting that part of the effects may be mediated by CO generated through the heme oxygenase pathway. Reperfusion of ischemic myocardium resulted in significant accumulation of radiolabeled inositol phosphate, inositol bisphosphate, and inositol triphosphate. Isotopic incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly during reperfusion. Reperfusion of the ischemic heart prelabeled with [14C] arachidonic acid resulted in modest increases in [14C] diacylglycerol and [14C] phosphatidic acid. Pretreatment of the heart with L-arginine significantly reversed this enhanced phosphodiesteratic breakdown during ischemia and early reperfusion. However, at the end of the reperfision the inhibitory effect of L-arginine on the phosphodiesterases seems to be reduced. In L-arginine treated hearts, SOD activity was progressively decreased with the duration of reperfusion time. The results suggests for the first time that NO plays a significant role in transmembrane signaling in the ischemic myocardium. This signaling appears to be on- and off- nature, and linked with SOD content of the tissue. The signaling is transmitted via cGMP and opposes the effects of phosphodiesterases by inhibiting the ischemia/reperfusion-induced phosphodiesteratic breakdown. Our results also suggest that NO activates heme oxygenase which further stimulates the production of cGMP presumably by CO signaling. Thus, NO not only potentiates cGMP mediated intracellular signaling, it also functions as a retrograde messenger for CO signaling in heart.  相似文献   

4.
Nervous system cells are highly dependent on adequate tissue oxygenation and are very susceptible to hypoxia, which causes mitochondrial dysfunctions involved in apoptosis and necrosis. In this paper, we examine the effect of a 12-h incubation of differentiated IMR-32 neuroblastoma cells in a hypoxic environment (73% N2: 2% O2: 5% CO2, v:v) by evaluating cell viability, modifications of NO, intracellular Ca2+ concentration [Ca2+]i and membrane potential, the production of phosphorylated ERK, desferoxamine-chelatable free iron and esterified F2-isoprostane levels. The same parameters were evaluated after a subsequent 24-h re-oxygenation period. The NO concentration increased significantly immediately after hypoxia and returned to values similar to those of controls after the reoxygenation period. At the same time, we observed a significant increase of [Ca2+]i immediately after hypoxia. Phosphorylated ERK proteins increased significantly during the first 2 h of hypoxia, then decreased, and remained practically unmodified after 12 h hypoxia and the following reoxygenation period. Moreover, IMR-32 cell mitochondria were significantly depolarized after hypoxia, while membrane potential returned to normal after the reoxygenation period. Finally, desferoxamine-chelatable free iron and F2-isoprostane levels also increased significantly after hypoxia. Our results indicate that 2% O2 hypoxia induces variations of NO and [Ca2+]i with subsequent mitochondrial depolarization, and it is responsible for oxidative stress, represented by increased free iron and F2-isoprostane, protein carbonyls and 4 hydroxynonenal protein adducts levels.  相似文献   

5.
Nitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production. We hypothesized that the amount of NO formed would be significantly higher than the amount of L-citrulline formed due to the efficiency of L-citrulline recycling via the citrulline-NO cycle. To test this hypothesis, endothelial cells were incubated with [14C]-L-arginine and stimulated by various agents to produce NO. The extent of NO and [14C]-L-citrulline formation were simultaneously determined. NO production exceeded apparent L-citrulline formation of the order of 8 to 1, under both basal and stimulated conditions. As further support, alpha-methyl-DL-aspartate, an inhibitor of argininosuccinate synthase (AS), a component of the citrulline-NO cycle, inhibited NO production in a dose-dependent manner. The results of this study provide evidence for the essential and efficient coupling of L-citrulline recycling, via the citrulline-NO cycle, to endothelial NO production.  相似文献   

6.
Despite intracellular L-arginine concentrations that should saturate endothelial nitric oxide synthase (eNOS), nitric oxide production depends on extracellular L-arginine. We addressed this 'arginine paradox' in bovine aortic endothelial cells by simultaneously comparing the substrate dependence of L-arginine uptake and intracellular eNOS activity, the latter measured as L-[3H]arginine conversion to L-[3H]citrulline. Whereas the Km of eNOS for L-arginine was 2 microM in cell extracts, the L-arginine concentration of half-maximal eNOS stimulation was increased to 29 microM in intact cells. This increase likely reflects limitation by L-arginine uptake, which had a Km of 108 microM. The effects of inhibitors of endothelial nitric oxide synthesis also suggested that extracellular L-arginine availability limits intracellular eNOS activity. Treatment of intact cells with the calcium ionophore A23187 reduced the L-arginine concentration of half-maximal eNOS activity, which is consistent with a measured increase in L-arginine uptake. Increases in eNOS activity induced by several agents were closely correlated with enhanced L-arginine uptake into cells (r = 0.89). The 'arginine paradox' may be explained in part by regulated L-arginine uptake into a compartment, probably represented by caveolae, that contains eNOS and that is distinct from the bulk cytosolic L-arginine.  相似文献   

7.
Previously, our laboratory found that pulmonary hypertension developed and lung nitric oxide (NO) production was reduced when piglets were exposed to chronic hypoxia (Fike CD, Kaplowitz MR, Thomas CJ, and Nelin LD. Am J Physiol Lung Cell Mol Physiol 274: L517-L526, 1998). The purposes of this study were to determine whether L-arginine addition augments NO production and to evaluate whether L-arginine uptake is impaired in isolated lungs of chronically hypoxic newborn piglets. Studies were performed by using 1- to 3-day-old piglets raised in room air (control) or 10% O(2) (chronic hypoxia) for 10-12 days. Lung NO production was assessed in isolated lungs from both groups by measuring the perfusate accumulation of nitrites and nitrates (collectively termed NO(-)(x)) before and after addition of L-arginine (10(-2) M) to the perfusate. The rate of perfusate NO(-)(x) accumulation increased by 220% (from 0.8 +/- 0.4 to 2.5 +/- 0.5 nmol/min, P < 0.05) after L-arginine addition to chronic hypoxic lungs but remained unchanged (3.2 +/- 0. 8 before vs. 3.3 +/- 0.4 nmol/min after L-arginine) in control lungs. In the second series of studies, L-arginine uptake was evaluated by measuring the perfusate concentration of L-[(3)H]arginine at fixed time intervals. The perfusate concentration of L-[(3)H]arginine at each time point was less (P < 0.05) in control than in chronic hypoxic lungs. Thus L-arginine uptake was impaired and may underlie in part the reduction in lung NO production that occurs when piglets are exposed to 10-12 days of chronic hypoxia. Moreover, these findings in isolated lungs lead to the possibility that L-arginine supplementation might increase in vivo lung NO production in piglets with chronic hypoxia-induced pulmonary hypertension.  相似文献   

8.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

9.
In this study, we investigated the possible interaction between the cationic amino acid transporter (CAT)-1 arginine transporter and ankyrin or fodrin. Because ankyrin and fodrin are substrates for calpain and because hypoxia increases calpain expression and activity in pulmonary artery endothelial cells (PAEC), we also studied the effect of hypoxia on ankyrin, fodrin, and CAT-1 contents in PAEC. Exposure to long-term hypoxia (24 h) inhibited L-arginine uptake by PAEC, and this inhibition was prevented by calpain inhibitor 1. The effects of hypoxia and calpain inhibitor 1 were not associated with changes in CAT-1 transporter content in PAEC plasma membranes. However, hypoxia stimulated the hydrolysis of ankyrin and fodrin in PAEC, and this could be prevented by calpain inhibitor 1. Incubation of solubilized plasma membrane proteins with anti-fodrin antibodies resulted in a 70% depletion of CAT-1 immunoreactivity and in a 60% decrease in L-arginine transport activity in reconstituted proteoliposomes (3,291 +/- 117 vs. 8,101 +/- 481 pmol. mg protein(-1). 3 min(-1) in control). Incubation with anti-ankyrin antibodies had no effect on CAT-1 content or L-arginine transport in reconstituted proteoliposomes. These results demonstrate that CAT-1 arginine transporters in PAEC are associated with fodrin, but not with ankyrin, and that long-term hypoxia decreases L-arginine transport by a calpain-mediated mechanism that may involve fodrin proteolysis.  相似文献   

10.
Protein and RNA syntheses were investigated with bulk isolated nerve and glial cells from rabbit brain. For polypeptide synthesis, ‘intact’ cells were incubated with [3H]leucine under various conditions and the results were compared with those of polyribosomal polypeptide synthesis. For RNA synthesis ‘intact’ cells were incubated with [3H]uridine or [3H]guanosine and the results were compared with those of DNA-dependent RNA polymerase assay. The bulk isolated ‘intact’ nerve cells were more active in protein synthesis than the ‘intact’ glial cells, while the latter synthesized RNA more actively than the former, although both polyribosomal polypeptide synthesis and DNA-dependent RNA polymerase activity were higher with the nerve cells, indicating a higher potential for the nerve cells. The observed discrepancy of RNA synthesis was explained by the significantly less active uptake of nucleosides with the nerve cells. Both protein and RNA syntheses with ‘intact’ cells were sensitive to hypoxic or glucose-deficient conditions. While both the nerve and glial cells were sensitive to hypoxia to a similar extent, the nerve cells were more sensitive to glucose deficiency. It was suggested that the bulk isolated nerve and glial cells still retain certain integral cell functions as viable cells, and can be utilized for various physiological and pharmacological investigations provided caution is exercised in their application and in the interpretation of the results.  相似文献   

11.
Nitric oxide (NO) is synthesized from L-arginine, and in endothelial cells influx of L-arginine is mediated predominantly via Na+-independent cationic amino acid transporters. Constitutive, Ca2+-calmodulin-sensitive eNOS (endothelial nitric oxide synthase) metabolizes L-arginine to NO and L-citrulline. eNOS is present in membrane caveolae and the cytosol and requires tetrahydrobiopterin, NADPH, FAD and FMN as additional cofactors for its activity. Supply of L-arginine for NO synthesis appears to be derived from a membrane-associated compartment distinct from the bulk intracellular amino acid pool, e.g. near invaginations of the plasma membrane referred to as 'lipid rafts' or caveolae. Co-localization of eNOS and the cationic amino acid transport system y+ in caveolae in part explains the 'arginine paradox', related to the phenomenon that in certain disease states eNOS requires an extracellular supply of L-arginine despite having sufficient intracellular L-arginine concentrations. Vasoactive agonists normally elevate [Ca2+]i (intracellular calcium concentration) in endothelial cells, thus stimulating NO production, whereas fluid shear stress, 17beta-oestradiol and insulin cause phosphorylation of the serine/threonine protein kinase Akt/protein kinase B in a phosphoinositide 3-kinase-dependent manner and activation of eNOS at basal [Ca2+]i levels. Adenosine causes an acute activation of p42/p44 mitogen-activated protein kinase and NO release, with membrane hyperpolarization leading to increased system y+ activity in fetal endothelial cells. In addition to acute stimulatory actions of D-glucose and insulin on L-arginine transport and NO synthesis, gestational diabetes, intrauterine growth retardation and pre-eclampsia induce phenotypic changes in the fetal vasculature, resulting in alterations in the L-arginine/NO signalling pathway and regulation of [Ca2+]i. These alterations may have significant implications for long-term programming of the fetal cardiovascular system.  相似文献   

12.
Nerve cells are very susceptible to hypoxia responsive for mitochondrial dysfunctions involved in the subsequent oxidative stress, apoptosis and necrosis. In this paper, we examined the effect of 12 h incubation of U-373 MG astrocytes in hypoxic environment (73% N2: 2% O2: 5% CO2, v:v) by evaluating cell proliferation, modifications of NO and ATP production, intracellular Ca2+ concentration [Ca2+]i, membrane potential, desferoxamine-chelatable free iron, esterified F2-isoprostanes levels and the production of phosphorylated ERK. The same parameters were evaluated also after a following re-oxygenation period of 24 h. Immediately after hypoxia the NO concentration increased significantly and returned to values similar to those of controls after the re-oxygenation period. At the same time, ATP levels remained similar to controls and the cell proliferation significantly decreased. This involved a significant increase of [Ca2+]i immediately after hypoxia and the value remained significantly elevated after the following re-oxygenation period. Moreover, after hypoxia, astrocytes were slightly although not significantly depolarized. Indeed iron and F2-isoprostanes levels increased significantly after hypoxia. Finally ERK proteins increased slowly and not significantly after hypoxia and the same trend was observed after the re-oxygenation period. On the whole, our results indicate that 2% O2 hypoxia induces a moderate oxidative stress, well tolerated by U-373 MG cells, remaining the ATP production, mitochondrial membrane potential and activated ERK proteins, similar to the values of controls.  相似文献   

13.
Vascular diseases are characterized by impairment of endothelial-derived nitric oxide (NO) bioactivity and increased vascular levels of hydrogen peroxide (H(2)O(2)). Here we examined the implications of H(2)O(2) for agonist-stimulated endothelial NO bioactivity in rabbit aortic rings and cultured porcine aortic endothelial cells (PAEC). Vessels pre-treated with H(2)O(2) exhibited impaired endothelial-dependent relaxation induced by acetylcholine or calcium ionophore. In contrast, H(2)O(2) had no effect on endothelium-independent relaxation induced by a NO donor, indicating a defect in endothelium-derived NO. This defect was not related to eNOS catalytic activity; treatment of PAEC with H(2)O(2) enhanced agonist-stimulated eNOS activity indicated by increased eNOS phosphorylation at Ser-1177 and de-phosphorylation at Thr-495 and enhanced conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline that was prevented by inhibitors of Src and phosphatidylinositol-3 kinases. Despite activating eNOS, H(2)O(2) impaired endothelial NO bioactivity indicated by attenuation of the increase in intracellular cGMP in PAEC stimulated with calcium ionophore or NO. The decrease in cGMP was not due to impaired guanylyl cyclase as H(2)O(2) treatment increased cGMP accumulation in response to BAY 41-2272, a NO-independent activator of soluble guanylyl cyclase. At concentrations that impaired endothelial NO bioactivity H(2)O(2) increased intracellular oxidative stress and size of the labile iron pool in PAEC. The increase in oxidative stress was prevented by the free radical scavenger's tempol or tiron and the iron chelator desferrioxamine and these antioxidants reversed the H(2)O(2)-induced impairment of NO bioactivity in PAEC. This study shows that despite promoting eNOS activity, H(2)O(2) impairs endothelial NO bioactivity by promoting oxidative inactivation of synthesized NO. The study highlights another way in which oxidative stress may impair NO bioactivity during vascular disease.  相似文献   

14.
Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.  相似文献   

15.
Experiments were carried out to determine whether bone cells isolated from rat calvaria degrade newly synthesized collagen intracellularly prior to secretion and to assess the effect of dichloromethylenebisphosphonate, a compound shown to stimulate collagen synthesis during this event. The findings indicate that isolated bone cells grown in culture degraded a proportion (average 16%) of newly synthesizes collagen prior to secretion. This process was markedly reduced by exposure to dichloromethylenebisphosphonate in a dose-related manner. Concomitantly with the observed decrease of degradation, an increase of collagen synthesis was detected as determined by the incorporation of [3H]proline into collagenase-digestible proteins or by the conversion of [3H]proline into [3H]hydroxyproline. No similar enhancement on total non-collagenous protein synthesis was evident. Dichloromethylenebisphosphonate did not influence the extracellular degradation of collagen. Although the reduction in intracellular degradation accounted only for part of the bisphosphonate mediated increase in net collagen synthesis, it is conceivable that the rate of collagen synthesis is regulated, at least in part, by mechanisms that modulate the level of intracellular degradation.  相似文献   

16.
Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.  相似文献   

17.
Summary.  In isolated rat heart mitochondria, L-arginine is oxidized by a nitric oxide synthase (mtNOS) achieving maximal rates at 1 mM L-arginine. The NOS inhibitor NG-nitro-L-arginine methyl ester (NAME) inhibits the increase in NO production. Extramitochondrial free magnesium inhibited NOS production by 59% at 3.2 mM. The mitochondrial free Mg2+ concentration increased to different extents in the presence of L-arginine (29%), the NO donor (S-nitroso-N-acetylpenicillamine) (105%) or the NOS inhibitors L-NAME (48%) or NG-nitro-L-arginine methyl ester, NG-monomethyl-L-arginine (L-NMMA) (53%). Under hypoxic conditions, mtNOS activity was inhibited by Mg2+ by up to 50% after 30 min of incubation. Reoxygenation restored the activity of the mtNOS to pre-hypoxia levels. The results suggest that in heart mitochondria there is an interaction between Mg2+ levels and mtNOS activity which in turn is modified by hypoxia and reoxygenation. Received April 2, 2001 Accepted September 21, 2001  相似文献   

18.
Abstract: Carotid body catecholamine and opioid levels were measured in rabbits exposed for 8 days to an atmosphere of 11% O2 in N2 (Po2 of ~ 80 mm Hg) and during an identical period of recovery, i.e., after 8 days of returning to the control normoxic atmosphere. Carotid bodies show a decrease in dopamine content at day 2. Thereafter, the levels of this biogenic amine increase progressively to peak at day 10, that is, 2 days after returning to a normoxic atmosphere. Finally, dopamine levels start to decrease and reach prehypoxic control levels at day 16, that is, after 8 days of recovery. In contrast, levels of native opioid peptides remain unchanged during the whole duration of the experiment, except for a decrease at day 2 of the hypoxic exposure. Levels of total opioid peptides are also below control values at day 2 of hypoxia, increase above control values on returning to a normoxic atmosphere (maximal levels at days 10-12), and later decrease to reach prehypoxic levels at day 16. As a result of these changes the ratios of dopamine to opioid levels show a progressive increase from day 0 to day 10 of the experiment and then return to control prehypoxic values. Carotid bodies isolated from animals that have been exposed to hypoxia for 8 days synthesize [3H]dopamine from its natural precursor [3H]tyrosine at a rate of 175 pmol/mg of protein/h, which is about double the rate of synthesis found in the carotid bodies of control animals and those allowed to recover for 8 days. The release of [3H]-dopamine induced by mild hypoxic stimuli and by a high external K+ concentration is greater in the carotid bodies isolated from animals hypoxic for 8 days than in those of control animals (catecholamine deposits were labeled by prior incubation with [3H]tyrosine); in contrast, the carotid bodies from chronically hypoxic animals exhibit an attenuated release response to intense hypoxic stimuli and to dinitrophenol. Stimulus-induced release of [3H]dopamine by carotid bodies isolated from animals allowed to recover for 8 days is not different from that of control animals. Our results suggest that modifications in the proportions of neurotransmitters, as well as changes in the stimulus-secretion coupling machinery in chemoreceptor cells, contribute to the adaptative responses seen in the carotid body during high altitude acclimatization.  相似文献   

19.

Background

Nitric oxide (NO) is an important presynaptic modulator of synaptic transmission. Here, we aimed to correlate the release of the major inhibitory neurotransmitter GABA with intracellular events occurring in rat brain axon terminals during their exposure to NO in the range of nanomolar–low micromolar concentrations.

Methods

Using [3H]GABA and fluorescent dyes (Fluo 4-AM, acridine orange and rhodamine 6G), the following parameters were evaluated: vesicular and cytosolic GABA pools, intracellular calcium concentration, synaptic vesicle acidification, and mitochondrial membrane potential. Diethylamine NONOate (DEA/NO) and S-nitroso-N-acetylpenicillamine (SNAP) were used as NO donors.

Results

DEA/NO and SNAP (in the presence of dithiothreitol (DTT)) stimulated external Ca2 +-independent [3H]GABA release, which was not attributed to a rise in intracellular calcium concentration. [3H]GABA release coincided with increasing GABA level in cytosol and decreasing the vesicular GABA content available for exocytotic release. There was a strong temporal correlation between NO-induced increase in cytosolic [GABA] and dissipation of both synaptic vesicle proton gradient and mitochondrial membrane potential. Dissipation was reversible, and recovery of both parameters correlated in time with re-accumulation of [3H]GABA into synaptic vesicles. The molar ratio of DTT to SNAP determined the rate and duration of the recovery processes.

Conclusions

We suggest that NO can stimulate GABA release via GABA transporter reversal resulting from increased GABA levels in cytosol. The latter is reversible and appears to be due to S-nitrosylation of key proteins, which affect the energy status of the pre-synapse.

General significance

Our findings provide new insight into molecular mechanism(s) underlying the presynaptic action of nitric oxide on inhibitory neurotransmission.  相似文献   

20.
Abstract: Activation of the calcium-dependent protease calpain has been proposed to be a necessary step in the formation of long-term potentiation (LTP) in the hippocampus, and stimulation of N-methyl-d -aspartate (NMDA) receptors leads to an increase in intracellular calcium concentration, calpain activation, proteolysis of cytoskeletal elements, and modification of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor properties. In the present study, we evaluated the effects of NMDA treatment of cultured hippocampal slices on the properties of AMPA receptors. Cultured hippocampal slices were treated with NMDA (100 µM) for 15 min and [3H]AMPA binding to membrane fractions was measured. NMDA-treated slices exhibited an increase in both “high-affinity” and “low-affinity” [3H]-AMPA binding, with smaller changes in 6-cyano-7-nitro[3H]quinoxaline-2,3-dione binding. The increase in [3H]AMPA binding was significantly reduced by preincubation of cultures with calpain inhibitor I or calpeptin (100 µM). Furthermore, NMDA exposure decreased the number of GluR1 subunits of AMPA receptors detected by an antibody against the C-terminal domain of the subunit in western blots and resulted in the formation of a lower molecular weight species detected by an antibody against the N-terminal domain. Both effects were completely prevented by calpain inhibitors. These results indicate that NMDA receptor activation produces calpain activation and complex modifications of AMPA receptor properties, which could be involved in NMDA receptor-mediated changes in synaptic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号