首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Biomass》1986,9(3):173-185
Thermophilic (55°C) and mesophilic (35°C and 22°C) anaerobic digestions in laboratory scale (4 litre) fixed-film reactors fed with screened dairy manure were successfully operated over a range of hydraulic retention times, from 1 to 20 days. Maximum methane production rates of 1·82, 1·68 and 1·28 litres CH4 litre−1 day−1 occurred at 1, 1·5 and 1 days HRT for the respective 55°C, 35°C and 22°C reactors. Both thermophilic and mesophilic digestions achieved maximum biodegradation efficiency at 10 days HRT. The thermophilic fixed-film reactor performed better than completely-mixed reactors in terms of methane production at HRTs shorter than 2 days. From the results, mesophilic fixed-film reactor operated at 35°C provided optimum methane production and net energy output between 1 and 5 days HRT.  相似文献   

2.
《Biological Wastes》1989,27(4):289-305
Anaerobic treatment of cheese whey using a 17·5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4·5 to 38·1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38·1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.  相似文献   

3.
 An enrichment culture obtained from anaerobic granular sludge of a bench-scale anaerobic reactor degraded methanol at 65°C via sulfate reduction and acetogenesis. Sulfate reduction was the dominant process (S2-/acetate=2.5). No methane formation was observed. Approximately 30% of the methanol was converted by acetogenic bacteria to acetate, while the remainder was degraded by these bacteria to H2 and CO2 in syntrophy with hydrogen-consuming sulfate-reducing bacteria. Pure cultures of sulfate-reducing and acetogenic bacteria were isolated and characterized. Received: 4 December 1995 / Received revision: 15 April 1996 / Accepted: 22 April 1996  相似文献   

4.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

5.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

6.
The sulfate kinetics in an anaerobic, sulfate-reducing biofilm were investigated with an annular biofilm reactor. Biofilm growth, sulfide production, and kinetic constants (Km and Vmax) for the bacterial sulfate uptake within the biofilm were determined. These parameters were used to model the biofilm kinetics, and the experimental results were in good agreement with the model predictions. Typical zero-order volume rate constants for sulfate reduction in a biofilm without substrate limitation ranged from 56 to 93 μmol of SO24-cm−3 h−1 at 20°C. The temperature dependence (Q10) of sulfate reduction was equivalent to 3.4 at between 9 and 20°C. The measured rates of sulfate reduction could explain the relatively high sulfide levels found in sewers and wastewater treatment systems. Furthermore, it has been shown that sulfate reduction in biofilms just a few hundred micrometers thick is limited by sulfate diffusion into biofilm at concentrations below 0.5 mM. This observation might, in some cases, be an explanation for the relatively poor capacity of the sulfate-reducing bacteria to compete with the methanogenic bacteria in anaerobic wastewater treatment in submerged filters.  相似文献   

7.
Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the sulfate-reducing bacteria. Instead, citrate was fermented to mainly acetate and formate. These fermentation products served as electron donors for the sulfate-reducing bacteria. Sulfate reduction activities of the reactor biomass with acetate and formate were sufficiently high to explain the sulfate reduction rates that are required for the process. Two citrate-fermenting bacteria were isolated. Strain R210 was closest related to Trichococcus pasteurii (99.5% ribosomal RNA (rRNA) gene sequence similarity). The closest relative of strain S101 was Veillonella montepellierensis with an rRNA gene sequence similarity of 96.7%. Both strains had a complementary substrate range.  相似文献   

8.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

9.
The effect of different substrates and different levels of sulfate and sulfide on methane production relative to sulfate reduction in high-rate anaerobic digestion was evaluated. Reactors could be acclimated so that sulfate up to a concentration of 5 g of sulfate S per liter did not significantly affect methanogenesis. Higher levels gave inhibition because of salt toxicity. Sulfate reduction was optimal at a relatively low level of sulfate, i.e., 0.5 g of sulfate S per liter, but was also not significantly affected by higher levels. Both acetoclastic and hydrogenotrophic methane-producing bacteria adapted to much higher levels of free H2S than the values reported in the literature (50% inhibition occurred only at free H2S levels of more than 1,000 mg/liter). High levels of free H2S affected the sulfate-reducing bacteria only slightly. Formate and acetate supported the sulfate-reducing bacteria very poorly. In the high-rate reactors studied, intensive H2S formation occurred only when H2 gas or an H2 precursor such as ethanol was supplied.  相似文献   

10.
An acetic-acid-based synthetic wastewater of different organic concentrations was successfully treated at 35 degrees C in anaerobic downflow fixed-film reactors operated at high organic loading rates and short hydraulic retention times (HRTs). Substrate removal and methane production rates close to theoretical values of complete volumetric chemical oxygen demand (COD) removal and maximum methane conversion were obtained. A high concentration of biofilm biomass was retained in the reactor. Steady-state biofilm concentration increased with increased organic loading rate and decreased HRTs, reaching a maximum of 8.3 kg VFS/m(3) at a loading rate of 17 kg COD/m(3) day. Biofilm substrate utilization rates of up to 1.6 kg COD/kg VFS day were achieved. Soluble COD utilization rates at various COD concentrations can be described by half-order reaction kinetics.  相似文献   

11.
Aims: The aim of the study was to investigate the feasibility of a continuous reactor for psychrophilic anaerobic wastewater treatment by using the sludge from cold natural environment. Methods and Results: Six sludge samples (S1–S6) were collected from different cold natural locations to select sludge with high anaerobic microbial activity under low temperatures. After a 225‐day incubation, the maximum specific methane production rate of a waterfowl lake sediment (S1) at 15°C (70·5 mLCH4 gVSS?1 day?1) was much higher than all other samples. S1 was thus chosen as the seed sludge for the reactor treating synthetic brewery wastewater at 15°C, by immobilizing the micro‐organisms on polyurethane foam carriers. The chemical oxygen demand (COD) removal efficiency reached over 80% after 240‐day operation at an organic loading rate of 5·3 kg m?3 day?1, and significant enrichment of biomass was observed. Clone libraries of the microbial communities in the inoculum had high diversities for both archaea and bacteria. Along with a decrease in microbial community diversities, the dominant bacteria (79·5%) at the end of the operation represented the phylum Firmicutes, while the dominant archaeon (41·5%) showed a similarity of 98% with the psychrotolerant methanogen Methanosarcina lacustris. Conclusions: The possibility of using anaerobic micro‐organisms from cold environments in anaerobic wastewater treatment under psychrophilic conditions is supported by these findings. Significance and Impact of the Study: This study enriches the theory on microbial community and the application on anaerobic treatment of sludge from cold natural environments.  相似文献   

12.
We investigated bacterial and archaeal community structures and population dynamics in two anaerobic bioreactors processing a carbohydrate- and sulfate-rich synthetic wastewater. A five-compartment anaerobic migrating blanket reactor (AMBR) was designed to promote biomass and substrate staging, which partially separates the processes of methanogenesis and sulfidogenesis in the middle and outer compartment(s) respectively. The second reactor was a conventional, single-compartment upflow anaerobic sludge blanket (UASB) reactor. Both reactors, which were seeded with the same inoculum, performed well when the influent chemical oxygen demand (COD)/SO(4) (2-) mass ratio was 24.4. The AMBR performed worse than the UASB reactor when the influent COD/SO(4) (2-) mass ratio was decreased to 5.0 by raising the sulfate load. Terminal restriction fragment length polymorphism analyses of bacterial 16S rRNA genes showed that the increase in sulfate load had a greater impact on bacterial diversity and community structure for the five AMBR compartments than for the UASB reactor. Moreover, bacterial community profiles across AMBR compartments became more similar through time, indicating a converging, rather than a staged community. While similar populations were abundant in both reactors at the beginning of the experiment, fermenting bacteria (clostridia, streptococci), and sulfate-reducing bacteria became more abundant in the AMBR, after shifting to a higher sulfate load, while a novel Thermotogales-like population eventually became predominant in the UASB reactor. A similar shift in the community structure of the hydrogenotrophic methanogens in the AMBR occurred: representatives of the Methanobacteriaceae out-competed the Methanospirillaceae after increasing the sulfate load in the AMBR, while the archaeal community structure was maintained in the UASB.  相似文献   

13.
The effects of sulfate on the anaerobic degradation of lactate, propionate, and acetate by a mixed bacterial culture from an anaerobic fermenter fed with wine distillery waste water were investigated. Without sulfate and with both sulfate and molybdate, lactate was rapidly consumed, and propionate and acetate were produced; whereas with sulfate alone, only acetate accumulated. Propionate oxidation was strongly accelerated by the presence of sulfate, but sulfate had no effect on acetate consumption even when methanogenesis was inhibited by chloroform. The methane production was not affected by the presence of sulfate. Counts of lactate- and propionate-oxidizing sulfate-reducing bacteria in the mixed culture gave 4.5×108 and 1.5×106 viable cells per ml, respectively. The number of lactate-oxidizing fermentative bacteria was 2.2×107 viable cells per ml, showing that sulfate-reducing bacteria outcompete fermentative bacteria for lactate in the ecosystem studied. The number of acetoclastic methanogens was 3.5×108 viable cells per ml, but only 2.5×104 sulfate reducers were counted on acetate, showing that acetotrophic methanogens completely predominated over acetate-oxidizing sulfate-reducing bacteria. The contribution of acetate as electron donor for sulfate reduction in the ecosystem studied was found to be minor.  相似文献   

14.

This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l−1 and 0.085 g l−1 sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h−1 and 0.0011 h−1, respectively. A lower methanogenic activity of 0.163 g CH4 day−1 g−1 volatile suspended solids (VSS) and 0.20 g CH4 day−1 g−1 VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.

  相似文献   

15.
Inhibition Experiments on Anaerobic Methane Oxidation   总被引:10,自引:5,他引:5       下载免费PDF全文
Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.  相似文献   

16.
《Biomass》1987,12(1):1-6
An anaerobic fixed-film reactor receiving screened dairy manure filtrate and supernatants was operated at 35°C and a hydraulic retention time (HRT) of 1 day. Methane production rates were very similar for both the screened slurry and supernatants. The results indicated that using supernatants from the sedimentation process could simplify the operational procedure in a methane production system. The utilization of a fixed-film reactor in methane production process could accommodate a hydraulically flushed dairy waste treatment system.  相似文献   

17.
Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L?1 day?1, which was higher than previously reported values (5.1–37.8 mg N L?1 d?1).  相似文献   

18.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   

19.
The performance of a full-scale (500 m3) sulfidogenic synthesis gas fed gas-lift reactor treating metal- and sulfate-rich wastewater was investigated over a period of 128 weeks. After startup, the reactor had a high methanogenic activity of 46 Nm3·h−1. Lowering the carbon dioxide feed rate during the first 6 weeks gradually lowered the methane production rate. Between weeks 8 and 93, less than 1% of the hydrogen supplied was used for methanogenesis. Denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified 16S rRNA gene fragments showed that the archaeal community decreased in diversity but did not disappear completely. After the carbon dioxide feed rate increased in week 88, the methane production rate also increased, confirming that methane production was carbon dioxide limited. Even though lowering the carbon dioxide feed appeared to affect part of the sulfate-reducing community, it did not prevent achieving the desired rates of sulfate reduction. The average sulfate conversion rate was 181 kg∙h−1 for the first 92 weeks. After 92 weeks, the sulfate input rate was increased and from week 94 to 128, the average weekly sulfate conversion rate was 295 kg·h−1 (SD ± 87). Even higher sulfate conversion rates of up to 400 kg·h−1 could be sustained for weeks 120–128. The long-term performance and stability together with the ability to control methanogenesis demonstrates that synthesis gas fed reactor can be used successfully at full scale to treat metal and sulfate-rich wastewater.  相似文献   

20.
This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l(-1) and 0.085 g l(-1) sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h(-1) and 0.0011 h(-1), respectively. A lower methanogenic activity of 0.163 g CH4 day(-1) g(-1) volatile suspended solids (VSS) and 0.20 g CH4 day(-1) g(-1) VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号