首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The nuclear hormone 1α,25-dihydroxyvitamin D3 (VD) has important cell-regulatory functions but also a strong calcemic effect. Therefore, various VD analogues have been synthesized and screened for their biological profile. In order to gain more insight into the molecular basis of the high antiproliferative but low calcemic action of the VD analogue EB1089, we characterized this compound in comparison to five structurally related VD analogues. The activities of the six VD analogues in in vitro assays (limited protease digestion assays for determining interaction with monomeric vitamin D receptor (VDR), ligand-dependent gel shift assays for showing the increase of DNA binding of VDR-retinoid X receptor (RXR) heterodimers, and reporter gene assays on different types of VD response elements for demonstrating the efficacy in nuclear VD signalling) were found to represent their biological potency (antiproliferative effect on different malignant cell lines). In this series, EB1089 proved to be the most potent VD analogue; that is, every structural modification (20-epi configuration, cis-configuration at position C24, or changes at the ethyl groups at position C25) appeared to reduce the determined activities mediated through the VDR of these analogues. Moreover, the modifications of EB1089 resulted in a loss of VD response element selectivity, suggesting that this parameter is very critical for the biological profile of this VD analogue. J. Cell. Biochem. 71:340–350, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
7.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1α-(hydroxymethyl)-3β-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1β-(hydroxymethyl)-3α-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation–dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Biochem. 66:457–470, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
9.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), has diverse effects in a variety of tissues and cell types, including skin. Since 1,25(OH)2D3 affects both fibroblast and keratinocytes, we evalauated the effect of 1,25(OH)2D3 or wound healing. We investigated the effect of the topically applied 1,25(OH)2D3 or vehicle on the healing of cutaneous wounds in rats in a blinded manner. Wound areas were measured by planimetry technique. Healing was expressed as the percentage of the original wound area that was healed. 1,25(OH)2D3 at concentrations between 5 and 50 ng/day caused a dose-dependent acceleration of healing. Time course and specificity studies indicated that 1,25(OH)2D3 specifically promoted healing between 1–5 days after wounding as compared with vitamin D (0.5 μg/day), which showed no significant improvement over control. Our results suggest that 1,25(OH)2D3 and its analogues may be a new class of compounds that could be developed to enhance wound healing. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
The main autocrine/paracrine role of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25-D3), is inhibition of cell growth and induction of cell differentiation and/or apoptosis. Synthesis and degradation of the secosteroid occurs not only in the kidney but also in normal tissue or malignant extrarenal tissues such as the colon. Because 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) is considered to be the main enzyme determining the biological half-life of 1,25-D3, we have examined expression of the CYP24A1 mRNA (by real-time RT-PCR) and protein (by immunohistochemistry) in normal human colon mucosa, colorectal adenomas, and adenocarcinomas in 111 patients. Although 76% of the normal and benign colonic tissue was either completely devoid of or expressed very low levels of CYP24A1, in the majority of the adenocarcinomas (69%), the enzyme was present at high concentrations. A parallel increased expression of the proliferation marker Ki-67 in the same samples suggests that overexpression of CYP24A1 reduced local 1,25-D3 availability, decreasing its antiproliferative effect. (J Histochem Cytochem 58:277–285, 2010)  相似文献   

13.
14.
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) is known to inhibit the proliferation and invasiveness of prostate cancer cells. However, 1α,25(OH)2D3can cause hypercalcemia and is not suitable as a therapeutic agent. 19-Nor-vitamin D derivatives are known to be less calcemic when administered systemically. In order to develop more potent anti-cancer agents with less calcemic side effect, we therefore utilized 3H-thymidine incorporation as an index for cell proliferation and examined the antiproliferative activities of nine C-2-substituted 19-nor-1α,25(OH)2D3 analogs in the immortalized PZ-HPV-7 normal prostate cell line. Among the nine analogs we observed that the substitution with 2α- or 2β-hydroxypropyl group produced two analogs having antiproliferative potency that is approximately 500- to 1000-fold higher than 1α,25(OH)2D3. The 3H-thymidine incorporation data were supported by the cell counting data after cells were treated with 1α,25(OH)2D3, 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3 or 19-nor-2β-(3-hydroxypropyl)-1α,25(OH)2D3 for 7 days. 19-Nor-2α-(3-hydroxypropyl)-1α,25(OH)2D3 and 19-nor-2β-(3-hydroxypropyl)-1α,25(OH)2D3 were also shown to be about 10-fold more active than 1α,25(OH)2D3 in cell invasion studies using prostate cancer cells. In conclusion, a substitution at the C-2 position of 19-nor-1α,25(OH)2D3 molecule with a hydroxypropyl group greatly increased the antiproliferative and anti-invasion potencies. Thus, these two analogs could be developed to be effective therapeutic agents for treating early and late stages of prostate cancer.  相似文献   

15.
16.
Vascular calcification is a frequent complication of atherosclerosis, diabetes and chronic kidney disease. In the latter group of patients, calcification is commonly seen in tunica media where smooth muscle cells (SMC) undergo osteoblastic transformation. Risk factors such as elevated phosphorus levels and vitamin D3 analogues have been identified. In the light of earlier observations by our group and others, we sought to inhibit SMC calcification via induction of ferritin. Human aortic SMC were cultured using β‐glycerophosphate with activated vitamin D3, or inorganic phosphate with calcium, and induction of alkaline phosphatase (ALP) and osteocalcin as well as accumulation of calcium were used to monitor osteoblastic transformation. In addition, to examine the role of vitamin D3 analogues, plasma samples from patients on haemodialysis who had received calcitriol or paricalcitol were tested for their tendency to induce calcification of SMC. Addition of exogenous ferritin mitigates the transformation of SMC into osteoblast‐like cells. Importantly, pharmacological induction of heavy chain ferritin by 3H‐1,2‐Dithiole‐3‐thione was able to inhibit the SMC transition into osteoblast‐like cells and calcification of extracellular matrix. Plasma samples collected from patients after the administration of activated vitamin D3 caused significantly increased ALP activity in SMC compared to the samples drawn prior to activated vitamin D3 and here, again induction of ferritin diminished the osteoblastic transformation. Our data suggests that pharmacological induction of ferritin prevents osteoblastic transformation of SMC. Hence, utilization of such agents that will cause enhanced ferritin synthesis may have important clinical applications in prevention of vascular calcification.  相似文献   

17.
18.
Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to characterize the marmoset's ability to metabolize dietary vitamin D3. We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2D3 between the colonies. Serum 1,25(OH)2D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2D3; excess 25(OH)D3 is metabolized into 24,25(OH)2D3. This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号