首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Transforming growth factor-beta (TGF-β) is a known tumor suppressor, which also exerts a tumor promoting activity at an advanced stage of cancer. Previously, we reported that expression of interferon consensus sequence-binding protein (ICSBP), also known as interferon regulatory factor-8, is positively correlated with TGF-β type I receptor (TGF-β RI) expression in osteosarcoma patient tissues. In this study, we demonstrated that ICSBP upregulated TGF-β RI and induced epithelial-to-mesenchymal transition-like phenomena in human osteosarcoma cell lines. As determined by soft agar growth of osteosarcoma cells and xenografted mouse models, ICSBP increased tumorigenicity, which was reversed by ICSBP knock-down or a TGF-β RI inhibitor. To test whether ICSBP directly regulates the promoter activity of TGF-β RI, we performed a TGF-β RI promoter assay, an electro mobility shift assay, and a chromatin immunoprecipitation assay. We observed that TGF-β RI promoter was activated in ICSBP-overexpressing osteosarcoma cells. Exploiting serial deletions and mutations of the TGF-β RI promoter, we found a putative ICSBP-binding site at nucleotides −216/−211 (GGXXTC) in the TGF-β RI promoter. Our data suggest that ICSBP upregulates TGF-β RI expression by binding to this site, causing ICSBP-mediated tumor progression in osteosarcoma cells. In addition, we found a positive correlation between ICSBP and TGF-β RI expression in several types of tumors using the cBioportal database.SummaryWe demonstrated that interferon consensus sequence-binding protein upregulates transforming growth factor-beta type I receptor (TGF-β RI) expression by binding to nucleotides −216/−211 (GGXXTC) in the TGF-β RI promoter, which resulted in increased tumorigenicity and tumor progression in human osteosarcoma cells.  相似文献   

8.
9.
Glucocorticoids have previously been shown to decrease Type 1 collagen synthesis in vivo and in fibroblast cell culture. Several studies have demonstrated that glucocorticoids decrease Type 1 procollagen gene expression. These latter studies have included uridine incorporation into proα1(I) and proα2(1) mRNas and nuclear run-off experiments. Using the ColCat 3.6 plasmid, which contains part of the 5' flanking regionof the proα1 (1) coullagen gene and the reporter gene, chljoramphenicol acetyltransferase, the present studies demonstrate by stable transfection of fetal rat skin fibrolblasts that dexamethasone down regulates the promoter activity of the proα1(I) collagen gene. The glucocorticoid-mediated down-regulastionof procolljagen gene expression was demonstrated using the ColCat 3.6, 2.4, 1.7, or 0.9 plasmid. In addition, competitive oligonucleotide transfection experiments and site specific mutation of the glucocorticoid response element (GRE) in the whoulue ColCat 3.6 plasmid did not elimiinatre the effect. The ipossibility existed that another cis-element inthe 5' flanking region of the proα1(I) collagen gene was also required for the glucocorticoid-mediated down-regulation of procollagen gene expression, since TGF-β has been shown to stimulate collagen proα1(I) and proα2(I) gene activities. Dexamethasone treatment of non-transfected skin fibroblasts did result in a decrease of transforming growth factor-β. The decrease of CVAT activity by dexamethasone was brought back to control value by the addition of exogenous TGF-β to the culture media. Gel mobility studies demonstrated that glucocorticoid treatment of rat skin fibroblasts decreased glucocorticoid recptor binding to the GRE and TGF-β activator protein to the TGF-β element which were brought back to control values by coordinate exogenous TGF-β treatment. Thus the interaction of these TGF-β molecules with cellular membrane receptors and subsequent rtransduction is dramatically decreased resulting in less signals to regulate collagen gene expression. These data indicate that glucocorticoids coordinately regulate procollagen gene expfrssion through both the GRE and TGF-β elements. Depression of procollagen gene expression by glucocorticoids through the TGF-β element is mediated by decreased TGF-β secretion, possibly involving a secondary effect on regulatory protein(s) encoded by noncollagenous protein gene(s). The present studies provide the bassis for a novel mechanism of glucocorticoid-mediated regulation of eukaryotic genes containing the TGF-β element. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
13.
14.
15.
16.
《The Journal of cell biology》1995,129(5):1421-1432
The genes coding for the two type I collagen chains, which are active selectively in osteoblasts, odontoblasts, fibroblasts, and some mesenchymal cells, constitute good models for studying the mechanisms responsible for the cell-specific activity of genes which are expressed in a small number of discrete cell types. To test whether separate genetic elements could direct the activity of the mouse pro-alpha 1(I) collagen gene to different cell types in which it is expressed, transgenic mice were generated harboring various fragments of the proximal promoter of this gene cloned upstream of the Escherichia coli beta-galactosidase gene. During embryonic development, X-gal staining allows for the precise identification of the different cell types in which the beta-galactosidase gene is active. Transgenic mice harboring 900 bp of the pro-alpha 1(I) proximal promoter expressed the transgene at relatively low levels almost exclusively in skin. In mice containing 2.3 kb of this proximal promoter, the transgene was also expressed at high levels in osteoblasts and odontoblasts, but not in other type I collagen-producing cells. Transgenic mice harboring 3.2 kb of the proximal promoter showed an additional high level expression of the transgene in tendon and fascia fibroblasts. The pattern of expression of the lacZ transgene directed by the 0.9- and 2.3-kb pro-alpha 1(I) proximal promoters was confirmed by using the firefly luciferase gene as a reporter gene. The pattern of expression of this transgene, which can be detected even when it is active at very low levels, paralleled that of the beta-galactosidase gene. These data strongly suggest a modular arrangement of separate cell-specific cis-acting elements that can activate the mouse pro-alpha(I) collagen gene in different type I collagen-producing cells. At least three different types of cell- specific elements would be located in the first 3.2 kb of the promoter: (a) an element that confers low level expression in dermal fibroblasts; (b) a second that mediates high level expression in osteoblasts and odontoblasts; and (c) one responsible for high level expression in tendon and fascia fibroblasts. Our data also imply that other cis- acting cell-specific elements which direct activity of the gene to still other type I collagen-producing cells remain to be identified.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号