首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although bone marrow-derived mesenchymal stem cells (MSCs) are an attractive cell therapy candidate, their potential is limited by poor survival following transplantation. Over-expression of anti-apoptotic heat shock proteins using viral vectors can improve the survival of these cells under stressful conditions in vitro and in vivo. It is also possible to induce heat shock protein expression in many cell types by simply exposing them to a transient, nonlethal elevation in temperature. The response profile of MSCs to such a thermal stress has not yet been reported. Therefore, this study sought to determine the kinetics of thermally induced heat shock protein expression by MSCs in vitro. To determine if heat shock protein expression was a function of thermal stress exposure time, MSCs were exposed to 42°C for 15, 30, 45, and 60 min and were harvested 24 h later. To establish the time-course of heat shock protein expression, MSCs were heat shocked for 60 min and harvested 2, 24, 48, 72, 96, and 120 h later. The cells were then analyzed for Hsp27 and Hsp70 expression by Western blot. Densitometric analysis revealed that exposure to a thermal stress induced expression of both Hsp27 and Hsp70 and that the level of expression was dependant on stress exposure time. Following 60 min of heat stress, both Hsp27 and Hsp70 accumulated maximal expression after 48 h with both proteins returning to constitutive expression levels by 120 h. This study demonstrates that heat shock protein expression can be induced in MSCs by a simple thermal stress.  相似文献   

3.
4.
To further elucidate the role of the constitutive heat shock protein-70 (HSC70) as a chaperone for the synthesis of myelin basic protein (MBP), HSC70 content was decreased in oligodendrocyte precursor cells prior to MBP expression either by transfection with an antisense oligonucleotide specific for HSC70, or by exposure to low levels of quercetin, a bioflavonoid known to decrease synthesis of HSC70. As these cells underwent differentiation in vitro, antisense treatment decreased HSC70 levels to 66% of controls. At the same time, a sharp induction resulted in the stress-inducible heat shock protein-70 (HSP70). Levels of two other stress proteins increased as well, namely, the 25-kDa heat shock protein (HSP25) and the 78-kDa glucose regulated protein (GRP78). MBP synthesis proceeded over a normal time course, but at only 50% of control values. As HSC70 content returned to normal, MBP synthesis was also restored to normal levels. Quercetin reduced the expression of HSC70 to an even greater extent than transfection, and prevented the induction of HSP70. In contrast to antisense-treated cells, MBP synthesis was essentially blocked in quercetin-treated cells even though levels of HSP25 and GRP78 increased. Taken together, these observations (a) indicate that HSP70 partially compensates for decreased chaperoning of nascent MBP by HSC70 (HSC70 and HSP70 are closely related and perform similar functions); (b) preclude the involvement of HSP25 and GRP78 in MBP synthesis; and (c) emphasize the requirement of HSC70 for optimal synthesis of MBP.  相似文献   

5.
Apoptosis contributes to cell death after cerebral ischaemia. A quantitative proteomics approach has been employed to define alterations in protein levels in apoptosis induced with staurosporine (STS). Human neuroblastoma derived SH-SY5Y cells were treated with STS (500 nM for 6 h) to induce apoptosis. Quantitative 2-DE was used to determine the changing protein levels with MALDI-TOF MS identification of proteins. Of the 154 proteins analysed, 13 proteins were significantly altered as a result of the apoptotic stimulus; ten of the proteins showed an increase in level with STS and were identified as heat shock cognate 71 (Hsc71), two isoforms of heat shock protein 70 (Hsp70), glucose regulated protein 78 (GRP78), F-actin capping protein, stress-induced phosphoprotein 1, chromatin assembly factor 1 (CAF-1), protein disulphide isomerase A3 (PDI A3) precursor, transitional ER ATPase and actin interacting protein 1 (AIP 1). Three proteins which displayed significant decrease in levels with STS were identified as tubulin, vimentin and glucose regulated protein 94 (GRP94). The functional roles and subcellular locations of these proteins collectively indicate that STS-induced apoptosis provokes induces an unfolded protein response involving molecular chaperones, cochaperones and structural proteins indicative of ER stress.  相似文献   

6.
To identify proteins linked to the pathogenesis of hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV), we profiled protein expression levels in samples of HCC. To identify essential proteins, ten samples of HCV-related HCC were analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. These experiments revealed increased levels of nine proteins in cancerous tissues compared to levels in corresponding noncancerous liver tissues. We focused on four members of the heat shock protein 70 family: 78 kDa glucose-regulated protein (GRP78), heat shock cognate 71 kDa protein (HSC70), 75 kDa glucose-regulated protein (GRP75), and heat shock 70 kDa protein 1 (HSP70.1). These results were confirmed by immunoblot analysis. In an additional 11 samples, the same expression patterns of these four proteins were observed. In total, 21 samples showed statistically significant up-regulation of GRP78, GRP75 and HSP70.1 in cancerous tissues. HSC70 showed a tendency toward overexpression. There has been no report describing overexpression of these four proteins simultaneously in HBV-related HCC as well as nonviral HCC. Our results suggest that these four proteins play important roles in the pathogenesis of HCV-related HCC and could be molecular targets for diagnosis and treatment of this disease.  相似文献   

7.
8.
Both the psychrophile Aquaspirillum arcticum and the psychrotroph Bacillus psychrophilus were found to acquire thermotolerance when either heat shocked or treated with nalidixic acid; two conditions which also resulted in the induction of heat shock proteins and/or stress proteins and also cell filamentation. The possible relatedness of acquisition of thermotolerance and cell filamentation was examined by inhibiting cell filamentation with 1.5% KCl. A. arcticum cells which were heat shocked in the presence of KCl did not become filamentous nor acquire thermotolerance suggesting that these two responses may be related. On the other hand, when cells of B. psychrophilus were treated in a similar fashion, they also were prevented from cell filamentation but their ability to become thermotolerant was unaffected. When A. arcticum cells were heat shocked in the presence of chloramphenicol, heat shock protein synthesis was inhibited but not the acquistion of thermotolerance. Similar experiments with B. psychrophilus revealed that partial induction of heat shock proteins still occurred; however, no thermotolerance was exhibited.Abbreviations hsp(s) heat shock proteins(s) - SEM standard error of the mean  相似文献   

9.
As one member of 70 kDa heat shock proteins, glucose‐regulated protein 78 (GRP78) participates in protein folding, transportation and degradation. This sort of capacity can be enhanced by stresses under which GRP78 is induced rapidly. Unlike its homologues, GRP78 presents multifaceted subcellular position: When ER retention, it serves as the switch of unfolded protein response; When mitochondrial binding, it directly interacts with apoptotic executors; When cell surface residing, it recognizes extracellular ligands, transducing proliferative signals, especially in certain tumors. The close correlation between GRP78 and neoplasm provides us further insight into the event of carcinogenesis and cancer cell chemoresistance, indicating its prognostic predicting significance and validating potential therapeutics for clinical usage, especially because its small molecular inhibitors are emerging quickly these years. What's more, GRP78‐related signaling may be helpful for clearer understanding of its biological mechanisms. J. Cell. Biochem. 110: 1299–1305, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
In vivo radiolabeling of chloroplast proteins in grain sorghum (Sorghum bicolor L. cv. Texas 610) leaves and their separation by one-dimensional electrophoresis revealed at least 6 heat shock proteins (HSPs) between 24 and 94 kDa. of which the 24 kDa protein was the most prominent. All of these chloroplast heat shock proteins were found exclusively in the stroma. The 24 kDa heat shock protein, upon closer examination using two-dimensional electrophoresis proved to be two similarly-sized heat shock polypeptides with identical molecular masses and level of radiolahel incorporation, hut slightly different in isoeiectric points, suggesting isomers. Separation of stromal heat shock proteins synthesised in two other C4 monocotyledons ( Punicum miliaceum L. and Umchloa panictrides L.) revealed similar putative isomers. each of 24 kDa. Several other, previously unidentified, heat shock proteins between 22 and 38 kDa were also observed in all three species. In P. miliaceum. the most prominent HSP was the pair of 24 kDa proteins, whereas in U. panicoides. it was a group of 35 to 38 kDa HSPs that was most abundant. In vivo chlorophyll fluorescence measurements showed that no sustained impairment to photosynthetic efficiency had occurred for each species after the heat stress regime. However, when cytoplasmic protein synthesis was inhibited during the high temperature treatment, a dramatic decrease was observed in photosynthetic efficiency, suggesting a possible protective role for chloroplast heat shock proteins. It was also shown that a single chloroplast HSP complex of around 380 kDa was observed in the stroma of both 5. bicolor and P. miliaceum leaves in vivo. This was in contrast to the smaller HSP complex (200–265 kDa) observed in previous studies on chloroplast heat shock proteins in Cj species.  相似文献   

11.
昆虫的热休克反应和热休克蛋白   总被引:5,自引:1,他引:5  
李冰祥  蔡惠罗 《昆虫学报》1997,40(4):417-427
热休克(热激heatshock)是指短暂、迅速地向高温转换所诱导出的一种固定的应激反应。诱导该反应的温度在种与种之间有所不同。热休克反应最明显的特征是:伴随着正常蛋白质合成的抑制,一部分特殊蛋白质的诱导和表达增加,即为热休克蛋白(heatshockproteins,HSPs)。尽管热休克蛋白的合成也能被其它形式的应激反应所诱导,将它们认为是应激蛋白可能更恰当,但人们习惯上仍将这类蛋白质称为热休克蛋白。由于热休克反应和热休克蛋白是在果蝇(Drosophiliamelanogaster)中最初发现的,故在昆虫中,特别是果蝇等双翅目昆虫中研究得较深入…  相似文献   

12.
Conditions are described for the heat shock acquisition of thermotolerance, peroxide tolerance and synthesis of heat shock proteins (hsps) in the Antarctic, psychrophilic yeast Candida psychrophila. Cells grown at 15°C and heat shocked at 25°C (3 h) acquired tolerance to heat (35°C) and hydrogen peroxide (100 mM). Novel heat shock inducible proteins at 80 and 110 kDa were observed as well as the presence of hsp 90, 70 and 60. The latter hsps were not significantly heat shock inducible. The absence of hsp 104 was intriguing and it was speculated that the 110 kDa protein may play a role in stress tolerance in psychrophilic yeasts, similar to that of hsp 104 in mesophilic species.  相似文献   

13.
The ability to withstand thermal stress in a laboratory population of the blowflyLucilia cuprina (measured as per cent adult survival following varying periods of exposure to elevated temperature up to a maximum of 48°C) was in the order pupa > larva > adult. Pre-exposure to a mild heat shock (37°C) induced tolerance to temperatures which were otherwise lethal. An analysis of heat shock-induced protein synthesis during development at similar elevated temperatures presented patterns corresponding to the above observations on thermotolerance. The induced level of synthesis of major heat shock proteins (viz., 79, 69, 28, 20 and 19 kDa) were greater in larval tissues than in most of the adult tissues except gonads. The response varied between young (2 days) and old (30 days) adults in a tissue-specific manner. In general, heat shock protein 69 kDa was most abundant in all the tissues studied. Control as well as heat shocked Malpighian tubules of adults uniquely showed two major [35S]methionine labelled bands corresponding to approximately 62 and 64 kDa. Immunoblots showed the 62 kDa protein to cross react with an antibody againstHelioihis HSP60. Although the synthesis of the 62 kDa polypeptide was prominent only in Malpighian tubules of adult blowflies, nearly equal levels of this HSP60 family polypeptide were present in all tissues (control as well heat shocked) except the larval salivary glands.  相似文献   

14.
Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.  相似文献   

15.
Summary We have isolated a new small heat shock gene, HSP12, from Saccharomyces cerevisiae. It encodes a polypeptide of predicted Mr 12 kDa, with structural similarity to other small heat shock proteins. HSP12 gene expression is induced several hundred-fold by heat shock and on entry into stationary phase. HSP12 mRNA is undetectable during exponential growth in rich medium, but low levels are present when cells are grown in minimal medium. Analysis of HSP12 expression in mutants affected in cAMP-dependent protein phosphorylation suggests that the gene is regulated by cAMP as well as heat shock. A disruption of the HSP12 coding region results in the loss of an abundant 14.4 kDa protein present in heat shocked and stationary phase cells. It also leads to the induction of the heat shock response under conditions normally associated with low-level HSP12 expression. The HSP12 disruption has no observable effect on growth at various temperatures, nor on the ability to acquire thermotolerance.  相似文献   

16.
The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca(2+) mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75-78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lbeta precursor.  相似文献   

17.
18.
Vibrio parahaemolyticus, a common enteropathogen in tropical and subtropical coastal regions, exhibits significant adaptive acid tolerance response and heat-shock response, and the envelope proteins induced by stresses are suggested to be associated with virulence. This work examined the heat-shock proteins located in the envelope of V. parahaemolyticus by two rapid methods; namely, the immunoblotting and biotin-labeling methods. The bacterial cells were cultured at 25 C and heat shocked at 37 or 42 C for 1 or 2 hr. The cells were first lysed, then proteins were separated by gel electrophoresis and probed with antiserum raised against heat-shocked cells. Next, the heat-shocked cells were examined by labeling with water soluble sulfo-NHS-LC-biotin. Proteins of 33, 61, 66, 71, 78, 92 and 101 kDa were induced, while 55, 86, 102, 120 and 160 kDa proteins were markedly enhanced in the envelope of the heat-shocked V. parahaemolyticus cells. The biotin tagged envelope proteins were purified using a monomeric avidin column, and the N-terminal sequence was determined and compared with other high identity protein sequences. The sequence results suggest that Vph1 (55 kDa), Vph2 (46 kDa) and Vph3 (42 kDa) are de novo synthesized heat-shock proteins located in the envelope of this pathogen, and the functions of these proteins in stress protection and virulence have yet to be determined.  相似文献   

19.
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self‐degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号