首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A circadian pacemaker is located in the eyes of a variety of marine gastropods, including Aplysia and Bulla. It produces a circadian rhythm in the frequency of spontaneously occurring optic nerve (ON) compound action potentials (CAPs). The circadian pacemaker in Bulla includes a population of 100 retinal pacemaker neurons, that produce the rhythmic CAP output. Intracellular recording from the Bulla pacemaker neurons has yielded new insight into their time-keeping ability. 2. Intracellular injection of Lucifer yellow dye into a single pacemaker neuron results in the spread of dye to several neurons. This dye coupling is presumably mediated by the gap junctions among neurons that are responsible for the synchronous firing of the population of pacemaker neurons and the generation of ON CAPs. 3. The circadian pacemaker in each eye interacts with the paired pacemaker in the contralateral eye. The interaction results in the coordinating firing of CAPs from each eye and in the coordinated phasing of the circadian rhythms of CAP activity generated in each eye. This interaction occurs by reciprocal excitatory chemical synapses. These synaptic receptors occur in the ON as well as in the retinal neuropil and CAP synchrony occurs in the ON as well as in the basal retina. 4. Pacemaker neurons are depolarized by 5-HT and membrane permeable cAMP analogues. The membrane resistance increases during the depolarization suggesting a background potassium current is decreased. 5. The tetrapeptide FMRF-HN2 hyperpolarizes the pacemaker neurons. It reverses the effect of 5-HT and cAMP, suggesting 5-HT and FMRF-NH2 may be acting on the same membrane channel, the S channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The marine gastropod Aplysia has a circadian clock in each eye that generates a circadian rhythm of optic nerve activity. The axons of pacemaker neurons carry the rhythmic activity to the brain where it can be recorded from various ganglionic connectives as it is distributed throughout the CNS. We had previously identified an eye-specific 48-kD protein using an antiserum, anti-S, that recognizes the period gene product of Drosophila. We have now obtained two partial amino acid sequences of the 48-kD protein and raised a polyclonal antiserum using a synthetic peptide with the amino acid sequence of one of them. The antiserum recognizes a family of spots of Mr 47–48 kD and Pi 5.9–6.0 on 2D immunoblots of eye proteins. The immunoblot staining intensity does not exhibit a circadian rhythm. Used in immunocytochemistry, the antiserum recognizes fibers in the optic nerve and retinal neuropil, pacemaker neurons, certain photoreceptors, and the photoreceptor rhabdom layer. It stains the optic nerve fibers and optic fiber terminals in the cerebral optic ganglion and recognizes the cerebral optic tracts, putative synaptic exchange areas, and optic tract projections from the cerebral ganglion into various head nerves and interganglionic connectives. The function of the 48-kD protein is not known but it could be involved in the maintenance or regulation of the retinal afferent pathways, including the pacemaker neuron axons, known from previous axonal transport and electrical recording studies to be the circadian output pathway. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
In the cockroach Leucophaea maderae transplantation studies located the circadian pacemaker center, which controls locomotor activity rhythms, to the accessory medulla (AMe), ventromedially to the medulla of the brain’s optic lobes. The AMe is densely innervated via GABA- and manyfold peptide-immunoreactive neurons. They express ultradian action potential oscillations in the gamma frequency range and form phase-locked assemblies of synchronously spiking cells. Peptide application resulted in transient rises of extracellularly recorded activity. It remained unknown whether transient rises in spontaneous electrical activity as a possible indication of peptide release occur in the isolated circadian clock in a rhythmic manner. In extracellular glass electrode recordings of the isolated AMe in constant darkness, which lasted at least 12 h, the distribution of daytime-dependent changes in activity independently of the absolute action potential frequency was examined. Rapid, transient changes in activity preferentially occurred at the mid-subjective night, with a minimum at the middle of the subjective day, hinting the presence of circadian rhythms in the isolated circadian clock. Additionally, ultradian rhythms in activity change that are multiples of a fundamental 2 h period were observed. We hypothesize that circadian rhythms might originate from coupled ultradian oscillations, possibly already at the single cell level.  相似文献   

4.
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus.  相似文献   

5.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   

6.
7.
The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recently beginning to be elucidated. As in flies and other insect species, pigment-dispersing hormone (PDH)-immunoreac- tive neurons of the accessory medulla of the cockroach are crucial elements of the circadian system. Lesions and transplantation experiments showed that the endogeneous circadian clock of the brain resides in neurons associated with the accessory medulla. The accessory medulla is organized into a nodular core receiving photic input, and into internodular and peripheral neuropil involved in efferent output and coupling input. Photic entrainment of the clock through compound eye photoreceptors appears to occur via parallel, indirect pathways through the medulla. Light-like phase shifts in circadian locomotor activity after injections of γ-aminobutyric acid (GABA)- or Mas-allatotropin into the vicinity of the accessory medulla suggest that both substances are involved in photic entrainment. Extraocular, cryptochrome-based photoreceptors appear to be present in the optic lobe, but their role in photic entrainment has not been examined. Pigment-dispersing hormone-immunoreactive neurons provide efferent output from the accessory medulla to several brain areas and to the peripheral visual system. Pigment-dispersing hormone-immunoreactive neurons, and additional heterolateral neurons are, furthermore, involved in bilateral coupling of the two pacemakers. The neuronal organization, as well as the prominent involvement of GABA and neuropeptides, shows striking similarities to the organization of the suprachiasmatic nucleus, the circadian clock of the mammalian brain.  相似文献   

8.
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.  相似文献   

9.
Substantial progress has been made in unraveling the organization of the circadian system of Aplysia californica. There are at least three circadian pacemakers in Aplysia. One has been localized in each eye and a third lies outside the eyes. Removal of the eyes disrupts the free-running locomotor activity rhythm; however, an extraocular oscillator can mediate a free-running rhythm in some eyeless animals. Although photoreceptors sufficient for entrainment of the ocular oscillator have been localized in the retina, photoreceptors outside the eyes are capable of "driving" a diurnal rhythm of locomotor activity and may also influence entrainment of ocular pacemakers. Finally, attention has been focused on the optic nerve as a coupling pathway between various parts of the system. The evidence suggests that information transmitted in the optic nerves is involved in entrainment of the ocular pacemaker by light, and in ocular control of the locomotor activity rhythm.  相似文献   

10.
The eyes of Bulla, a marine snail, express a circadian rhythm in the frequency of optic nerve compound action potentials (CAPs). The two ocular pacemakers are mutually coupled, and their interaction can be observed in vitro. The evidence for mutual coupling, as demonstrated in the present experiments, was as follows: (1) When intact Bulla were placed into darkness for up to 72 days, the two pacemakers did not desynchronize. (2) The free-running period of the ocular rhythm in the intact system (24.4 hr) was longer than the free-running period of the rhythm recorded from isolated eyes (23.7 hr). (3) When the two ocular pacemakers were experimentally desynchronized in vitro, resynchronization occurred if the pacemakers were allowed to interact for 48 hr. The coupling signals are most likely the CAPs. These impulses are conducted through the central ganglia and emerge as efferent impulses in the opposite optic nerve. Ocular-derived efferent impulse activity affects spontaneous impulse production in the target eye and alters the waveform of the circadian rhythm. The coupling pathway mediating syncrhonization consists of the two optic nerves, the cerebral ganglia, and the cerebral commissure. The demonstration of coupling in vitro provides a new opportunity for studying the cellular mechanisms underlying mutual pacemaker entrainment.  相似文献   

11.
Summary The eye of the mollusk Bulla gouldiana contains a pacemaker that generates a circadian rhythm in compound action potentials (CAPs) in the optic nerve. In this paper, we present evidence of a second circadian rhythm in the optic nerve of the eye maintained in darkness at 15 °C. This is a rhythm in the frequency of small (10–40 V) neural impulses that occurs about 12 h out-of-phase with the rhythm in CAPs. Typically, the small-spike frequency is at a minimum within an hour of the peak in CAP frequency and is maximal during the subjective night. Like the CAP rhythm, the phase of the small-spike rhythm is determined by the prior light/dark cycle. A rebound in small-spike activity following the end of a light pulse and the presence of photoinhibited impulses in surgically reduced eyes suggests that the cells that generate the small-spikes may be photoreceptors that are inhibited by light. In addition, by using isolated nervous system preparations, we have found that smallspikes occur in the two optic nerves in a one-for-one relationship immediately following a light-to-dark transition. This inter-eye communication may be involved in the coupling of the ocular pacemakers.Abbreviations ASW artificial sea water - BRN basal retinal neuron - CAP compound action potential  相似文献   

12.
The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock.  相似文献   

13.
The proinflammatory cytokine interferon (IFN-gamma) is an immunomodulatory molecule released by immune cells. It was originally described as an antiviral agent but can also affect functions in the nervous system including circadian activity of the principal mammalian circadian pacemaker, the suprachiasmatic nucleus. IFN-gamma and the synergistically acting cytokine tumor necrosis factor-alpha acutely decrease spontaneous excitatory postsynaptic activity and alter spiking activity in tissue preparations of the SCN. Because IFN-gamma can be released chronically during infections, the authors studied the long-term effects of IFN-gamma on SCN neurons by treating dispersed rat SCN cultures with IFN-gamma over a 4-week period. They analyzed the effect of the treatment on the spontaneous spiking pattern and rhythmic expression of the "clock gene," Period 1. They found that cytokine-treated cells exhibited a lower average spiking frequency and displayed a more irregular firing pattern when compared with controls. Furthermore, long-term treatment with IFN-gamma in cultures obtained from a transgenic Per1-luciferase rat significantly reduced the Per1-luc rhythm amplitude in individual SCN neurons. These results show that IFN-gamma can alter the electrical properties and circadian clock gene expression in SCN neurons. The authors hypothesize that IFN-gamma can modulate circadian output, which may be associated with sleep and rhythm disturbances observed in certain infections and in aging.  相似文献   

14.
Various day-night rhythms, observed at molecular, cellular, and behavioral levels, are governed by an endogenous circadian clock, predominantly functioning in the hypothalamic suprachiasmatic nucleus (SCN). A class of clock genes, mammalian Period (mPer), is known to be rhythmically expressed in SCN neurons, but the correlation between mPER protein levels and autonomous rhythmic activity in SCN neurons is not well understood. Therefore, we blocked mPer translation using antisense phosphothioate oligonucleotides (ODNs) for mPer1 and mPer2 mRNAs and examined the effects on the circadian rhythm of cytosolic Ca2+ concentration and action potentials in SCN slice cultures. Treatment with mPer2 ODNs (20microM for 3 days) but not randomized control ODNs significantly reduced mPER2 immunoreactivity (-63%) in the SCN. Nevertheless, mPer1/2 ODNs treatment inhibited neither action potential firing rhythms nor cytosolic Ca2+ rhythms. These suggest that circadian rhythms in mPER protein levels are not necessarily coupled to autonomous rhythmic activity in SCN neurons.  相似文献   

15.
Extraretinal photoreception is a common input route for light resetting signals into the circadian clock of animals. In Drosophila melanogaster, substantial circadian light inputs are mediated via the blue light photoreceptor CRYPTOCHROME (CRY) expressed in clock neurons within the brain. The current model predicts that, upon light activation, CRY interacts with the clock proteins TIMELESS (TIM) and PERIOD (PER), thereby inducing their degradation, which in turn leads to a resetting of the molecular oscillations within the circadian clock. Here the authors investigate the function of another putative extraretinal circadian photoreceptor, the Hofbauer-Buchner eyelet (H-B eyelet), located between the retina and the medulla in the fly optic lobes. Blocking synaptic transmission between the H-B eyelet and its potential target cells, the ventral circadian pacemaker neurons, impaired the flies' ability to resynchronize their behavior under jet-lag conditions in the context of nonfunctional retinal photoreception and a mutation in the CRY-encoding gene. The same manipulation also affected synchronized expression of the clock proteins TIM and PER in different subsets of the clock neurons. This shows that synaptic communication between the H-B eyelet and clock neurons contributes to synchronization of molecular and behavioral rhythms and confirms that the H-B eyelet functions as a circadian photoreceptor. Blockage of synaptic transmission from the H-B eyelet in the presence of functional compound eyes and the absence of CRY also results in increased numbers of flies that are unable to synchronize to extreme photoperiods, supplying independent proof for the role of the H-B eyelet as a circadian photoreceptor.  相似文献   

16.
17.
The behavior of mammals is characterized by a 24-h cycle of rest and activity which is a fundamental adaption to the solar cycle of light and darkness. The pacemaker of this circadian clock is localized in the ventral part of the hypothalamus, the so-called suprachiasmatic nuclei (SCN), and is entrained by light signals mediated by the eye. The eye is directly connected via the retinohypothalamic tract (RHT) to the SCN. Light that reaches the retina elicits glutamate release at the synaptic terminals of the RHT and influences the neurons in the SCN in a manner that alters the behavioral state of the animal. A light pulse that reaches the retina at the beginning of the night elicits a delay of the clock phase, whereas a light pulse that reaches the retina at the end of the dark period leads to an advance of the clock phase. This advance or delay can be quantified by measuring the change in onset of wheel-running activity. Such measurements have, and continue to provide, a remarkably powerful assay of how light is detected and transduced to regulate circadian rhythms. The methods used for such measurements in mice are described in the following article.  相似文献   

18.
This paper discusses circadian output in terms of the signaling mechanisms used by circadian pacemaker neurons. In mammals, the suprachiasmatic nucleus houses a clock controlling several rhythmic events. This nucleus contains one or more pacemaker circuits, and exhibits diversity in transmitter content and in axonal projections. In Drosophila, a comparable circadian clock is located among period -expressing neurons, a sub-set of which (called LN-vs) express the neuropeptide PDF. Genetic experiments indicate LN-vs are the primary pacemakers neurons controlling daily locomotion and that PDF is the principal circadian transmitter. Further definition of pacemaker properties in several model systems will provide a useful basis with which to describe circadian output mechanisms.  相似文献   

19.
Summary The eye of the marine mollusk Aplysia californica contains a photo-entrainable circadian pacemaker that drives an overt circadian rhythm of spontaneous compound action potentials in the optic nerve. Serotonin is known to influence the phase of this ocular rhythm. The aim of the present study was to evaluate whether potassium channels are involved in effects on the ocular circadian rhythm. Our experimental approach was to study the effect of the potassium channel antagonist barium on serotonin-induced phase shifts of this rhythm. The application of barium was found to block serotonininduced phase shifts whereas barium alone did not cause significant phase shifts. The effects of barium were found to be dose dependent. In addition, barium blocked forskolin-induced phase advances but did not interfere with serotonin-induced increases in cAMP content. Finally, barium antagonized serotonin-induced suppression of compound action potential activity. These results are consistent with a model in which the application of serotonin phase shifts the ocular pacemaker by causing a membrane hyperpolarization which is mediated by a cAMP-dependent potassium conductance.Abbreviations ASW artificial seawater - Ba+ + barium - CAP compound action potential - CT circadian time - 5-HT serotonin - TEA tetraethylammonium  相似文献   

20.
The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors, pineal organs also contain neurons and glial elements. Extracranial pineal organs of submammalians are cone-dominated photoreceptors sensitive to different wavelengths of light, while intracranial pineal organs predominantly contain rod-like photoreceptor cells and thus scotopic light receptors. Vitamin B-based light-sensitive cryptochromes localized immunocytochemically in some pineal cells may take part in both the photoreception and the pacemaker function of the pineal organ. In spite of expressing phototransduction cascade molecules and forming outer segment-like cilia in some species, the mammalian pineal is considered by most of the authors as a light-insensitive organ. Expression of phototransduction cascade molecules, predominantly in young animals, is a photoreceptor-like characteristic of pinealocytes in higher vertebrates that may contribute to a light-percepting task in the perinatal entrainment of rhythmic functions. In adult mammals, adrenergic nerves--mediating daily fluctuation of sympathetic activity rather than retinal light information as generally supposed--may sustain circadian periodicity already entrained by light perinatally. Altogether three phases were supposed to exist in pineal entrainment of internal pacemakers: an embryological synchronization by light and in viviparous vertebrates by maternal effects (1); a light-based, postnatal entrainment (2); and in adults, a maintenance of periodicity by daily sympathetic rhythm of the hypothalamus. In addition to its visual function, the lateral eye retina performs a nonvisual task. Nonvisual retinal light perception primarily entrains genetically-determined periodicity, such as rod-cone dominance, EEG rhythms or retinomotor movements. It also influences the suprachiasmatic nucleus, the primary pacemaker of the brain. As neither rods nor cones seem to represent the nonvisual retinal photoreceptors, the presence of additional photoreceptors has been supposed. Cryptochrome 1, a photosensitive molecule identified in retinal nerve cells and in a subpopulation of retinal photoreceptors, is a good candidate for the nonvisual photoreceptor molecule as well as for a member of pacemaker molecules in the retina. When comparing various visual and nonvisual photoreceptors, transitory, "semi visual" (directional) light-perceptive cells can be detected among them, such as those in the parietal eye of reptiles. Measuring diffuse light intensity of the environment, semivisual photoreceptors also possess some directional light perceptive capacity aided by complementary lens-like structures, and screening pigment cells. Semivisual photoreception in aquatic animals may serve for identifying environmental areas of suitable illumination, or in poikilotermic terrestrial species for measuring direct solar irradiation for thermoregulation. As directional photoreceptors were identified among nonvisual light perceptive cells in the lancelet, but eyes are lacking, an early appearance of semivisual function, prior to a visual one (nonvisual --> semivisual --> visual?) in the vertebrate evolution was supposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号