首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane-associated protein kinase C (PKC) activity in lymphocytes freshly isolated from rat spleen was stimulated by the C-terminal parathyroid hormonerelated protein fragments, PTHrP-(107–111) and PTHrP-(107–139), at concentrations from 10?3 to 104 pM. By contrast, the same concentrations of PTHrP-(120–139), Without the 107–111 TRSAW (-Thr-Arg-Ser-Ala-Trp-) sequence of the other C terminal fragments, did not stimulate spleen lymphocyte PKC. Low concentrations of the N-terminal PTHrP-(1–40) fragment also stimulated membrane-associated PKC activity in the spleen lymphocytes. These results suggest that PTHrP might be an important physiological regulator of the immune response. Published 1994 Wiley-Liss, Inc.  相似文献   

2.
Intact human parathyroid hormone, hPTH [1-84], and the hPTH [1-34] fragment stimulated membrane-associated protein kinase C (PKC) activity in immortalized (but still differentiation-competent) murine BALB/MK-2 skin keratinocytes. Unexpectedly, the hormone and its fragment did not stimulate adenylate cyclase. The failure of PTH to stimulate adenylate cyclase activity was not due to the lack of a functioning receptor-cyclase coupling mechanism because the cells were stimulated to synthesize cyclic adenosine monophosphate (cyclic AMP) by the beta-adrenergic drug isoproterenol. Thus, skin keratinocytes seem to have an unconventional PTH receptor that is coupled to a PKC-activating mechanism but not to adenylate cyclase. These observations suggest that normal and neoplastic skin keratinocytes respond to the PTH-related peptide that they make and secrete.  相似文献   

3.
We have examined the effects of constitutive expression of PTHrP on the growth and differentiation of populations of cells derived from a clonal chondrocytic cell line, CFK2. Cells were stably transfected with cDNA encoding either full-length, secretory PTHrP (CFK2P) or nonsecretory PTHrP (CFK2P-SS). In cultures of cells plated at low density, secretory PTHrP acted as a potent mitogen compared with nonsecretory PTHrP or exogenous PTHrP-(1-34), both of which stimulated only a minor increase in proliferation. In populations of control cells maintained postconfluent for several weeks, there was a dramatic increase in expression of mRNA for type II collagen, aggrecan, and link protein. Addition of exogenous PTHrP-(1-34) at a concentration of 10−8 M to these cultures was ineffective in inhibiting this time-dependent increase in expression of matrix proteins. In contrast, populations of cells producing either secretory or nonsecretory forms of PTHrP, maintained over the same time period, demonstrated an almost complete inhibition of mRNA expression for matrix proteins. These observations demonstrate that PTHrP acts as a bifunctional modulator of chondrogenesis and that some of its biological activity is exerted via a mechanism distinct from the recognised signal transduction pathways linked to the PTH/PTHrP receptor. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The C-terminal region of parathyroid hormone-related protein (PTHrP) containing the sequence (107–111) appears to be a potent inhibitor of osteoclastic bone resorption. In the present study, we have investigated the effect of human (h)PTHrP (107–139) and hPTHrP (107–111)NH2 on the proliferation of osteoblastic rat osteosarcoma UMR 106 cells. We found that both C-terminal PTHrP peptides, like hPTHrP (1–141), were antimitogenic for these cells, between 1 pM and 10 nM. [Tyr34]hPTHrP (1–34)NH2 was as potent as these peptides but less effective as growth inhibitor in these cells. UMR 106 cells were found to produce and secrete immunoreactive PTHrP. Addition of anti-PTHrP neutralizing antibodies to C- and N-terminal epitopes of PTHrP increased the growth of these cells. Our data suggest that the antiproliferative effect of these C-terminal PTHrP analogs may be independent of cyclic adenosine 3′:5′-monophosphate (cAMP) and mediated by protein kinase C. These findings support an autocrine role of PTHrP in bone metabolism. J. Cell. Physiol. 170:209–215, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Abstract: Micromolar concentrations of β-amyloid (25–35) or substance P stimulated [3H] MK-801 binding in the presence of low concentrations of glutamate (1 γM) and glycine (0.02 γM). Unlike polyamines spermine and spermidine, neither β-amyloid (25–35) nor substance P increased [3H] MK-801 binding in the presence of maximally stimulating concentrations of glutamate and glycine. 5,7-Dichloro-kynurenic acid, CGS-19755, and arcaine completely inhibited the stimulated [3H] MK-801 binding. There was an apparent decreased potency of the [3H] MK-801 binding inhibition curve for 5,7-dichlorokynurenic acid, but not CGS-19755 or arcaine, in the presence of either β-amyloid (25–35) or substance P. The compounds do not appear to act through the strychnine-insensitive glycine binding site because neither β-amyloid (25–35) nor substance P displaced [3H] glycine binding. Full-length β-amyloid (1-40), up to 10 γM, did not stimulate [3H] MK-801 binding. Concentrations >10 γM could not be tested because they formed large aggregate precipitates in the assay. The data indicate that β-amyloid (25–35) or substance P does not stimulate [3H] MK-801 binding at either the N-methyl-D-aspartate, glycine, or polyamine binding sites. Furthermore, the nonpeptide substance P receptor (NK,) antagonist, CP-96,345, did not block β-amyloid (25–35)- or substance P-stimulated [3H] MK-801 binding. Therefore, the effect is not due to an interaction between the substance P receptors and the N-methyl-D-aspartate receptor-operated ionophore. Finally, if these observations can be verified using single-channel recording techniques, they may have implications in the pattern of selective neuronal loss observed in patients with neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases.  相似文献   

6.
《Cellular immunology》1985,96(1):71-82
To investigate the role of Ia and immunoglobulin (Ig) molecules of B cells in alloantigen-specific and nominal antigen-specific T-cell activations, the ability of B cells to stimulate Ig allotype-specific T cells was examined. T15-primed B10.BR T cells responded to MOPC 315 (IgA myeloma protein derived from BALB/c) as well as T15 but not to MOPC31c (IgG, myeloma protein). These T cells were stimulated by papain-digested Fc fragment of T15. Thus, T15-primed B10.BR T cells were shown to be specific for Ig allotype of T15, that is, Igh-2a. T15-specific B10.BR T cells were selected by 10-day cultures with T15 in vitro. They responded to BALB.K spleen cells without addition of soluble T15 antigen to the assay culture. Stimulator cells in this mixed lymphocyte reaction (MLR)-like response between T15-specific B10.BR T cells and BALB.K spleen cells were Thy-1, Ia+ cells and these responses were blocked by anti-Iaκ antibodies. Furthermore, Sephadex G-10-passed BALB.K B cells stimulated the proliferation of T15-specific B10.BR T cells, while they failed to stimulate allogeneic BALB/c spleen cells. The stimulating ability of B cells in this MLR-like response of T15-specific B10.BR T cells was shown to be genetically restricted, namely, both H-2 and non-H-2 genes are involved in the manifestation of the stimulating ability. This system will provide a useful model for studying the role of B-cell surface Ig and Ia molecules in the activation of antigen-specific T cells and alloreactive T cells.  相似文献   

7.
Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the ``novel' (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hallmarks of the ``conventional' (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequences, revealed highest homology to PKCs from animals but also distant relationships to Ser/Thr kinases from protozoa, plants, and bacteria. However, a comparison of the complete structures of the sponge PKCs, which are—already—identical to those of nPKCs and cPKCs from higher metazoa, with the structures of protozoan, plant, and bacterial Ser/Thr kinases indicates that the metazoan PKCs have to be distinguished from the nonmetazoan enzymes. These data indicate that metazoan PKCs have a universal common ancestor which they share with the nonmetazoan Ser/Thr kinases with respect to the kinase domain, but they differ from them in overall structural composition. Received: 10 January 1996 / Accepted: 12 March 1996  相似文献   

8.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and all-trans retinoic acid (RA), the active metabolites of vitamins D and A respectively, regulate the proliferation and differentiation of keratinocytes. Both the vitamin D receptor (VDR) and the retinoic acid receptor family (RAR) bind to DNA response elements as heterodimers with the retinoic X receptor (RXR), suggesting that there are pathways of action that are shared by both compounds. Therefore, we examined the interactions of 1,25(OH)2D3 and RA upon the proliferation and differentiation of normal human keratinocytes (NHK) and of a squamous cell carcinoma cell line, SCC4. Although both 1,25(OH)2D3 and RA were each able to inhibit NHK proliferation in a dose-dependent manner, when they were administered in combination, proliferation was stimulated, suggesting mutual antagonism. In contrast, SCC4 cells proved insensitive in terms of proliferation to 1,25(OH)2D3 and to all but the highest concentration (10−6 M) of RA. 1,25(OH)2D3 exerted a biphasic effect on transglutaminase (TGase) and involucrin (INV) mRNA levels, with maximal stimulation at 10−9 M. RA inhibited TGase and INV mRNA levels and antagonized the stimulation by 1,25(OH)2D3. A similar pattern was observed for TGase protein, but, RA, which, by itself, reduced INV, markedly enhanced the ability of 1,25(OH)2D3 to raise INV levels, possibly by inhibiting 1,25(OH)2D3-stimulated TGase activity and cross-linking of soluble INV into the insoluble cornified envelope (CE). Thus, in NHK cells, RA antagonizes the antiproliferative prodifferentiating actions of 1,25(OH)2D3, but assessment of a single marker, such as INV protein, may be misleading. J. Cell. Physiol. 174:1–8, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Plasma membranes (1–2 mg protein) prepared from the livers of adult male rats and human organ donors were incubated with 0.6 μM [α-32P] guanosine triphosphate (GTP) in an adenosine triphosphate (ATP)-regenerating buffer at 37°C for 1 h; during this incubation, the [32P]GTP is hydrolyzed and the nucleotide that is predominantly bound to the membranes is [32P] guanosine diphosphate (GDP). [32P]GDP release from the liver membranes was proportional to the protein concentration and increased as a function of time. At 5 mM, Ca2+, Mg2+, Mn2+, and Zn2+ maximally inhibited GDP release by 80–90%, whereas, 5 mM Cu2+ maximally stimulated the reaction by 100%. Therefore, cations were not included in the buffer used in the GDP release step. One μM Gpp(NH)p (5′-guanylylimidodiphosphate), a nonhydrolyzable analog of GTP, maximally stimulated [32P]GDP release in the liver membranes by up to 30%. Although 10 nM Gpp(NH)p had no effect on GDP release, it appeared to stabilize the hormonal effect by blocking further GDP/GTP exchange. In the rat membranes, 1–100 nM glucagon (used as a positive control) stimulated [32P]GDP release by about 17% (P < .05); similarly, 0.1–100 nM insulin stimulated [32P]GDP release by 10–13% (P < .05). In the human membranes, 10 pM to 100 nM insulin stimulated [32P]GDP release by 7–10%. In the rat membranes, 10 nM insulin stimulated [32P]GDP release by 17 and 24% at 2 and 4 min, respectively (P < .05); in the human membranes, 10 nM insulin stimulated [32P]GDP release by about 9% at 2 and 4 min. Normal rabbit IgG (used as a control for insulin receptor antibody) by itself stimulated the GDP release by rat and human membranes. However, the stimulation of the GDP release by insulin receptor antibody was consistently higher than that observed with normal rabbit IgG. Four to 15 μg of insulin receptor antibody stimulated [32P]GDP release by 12–22% (P < .05) and 7–14% in rat and human membranes, respectively. These results indicate that ligand binding to the insulin receptor results in a functional interaction of the receptor with a guanine nucleotide-binding transducer protein (G protein) and activation of GTP/GDP exchange.  相似文献   

10.
Summary Cloned mouse keratinocytes (MK-1 cells) display density-dependent growth arrest when reaching confluency in a serum-free medium with a calcium concentration <0.1 mM, supplemented only with insulin and transferrin. In this quiescent state, greater than 95% of the cell population is in the G0/1 phase of the cell cycle. Treatment of quiescent MK-1 cells with 1 to 10 ng/ml epidermal growth factor (EGF) resulted in a sharp burst of DNA synthetic activity. Both insulin and cholera toxin potentiated the mitogenic effect of EGF, but neither agent was necessary or sufficient to induce thymidine incorporation into DNA. Dexamethasone abolished the effect of insulin, but not the mitogenic effect of EGF alone. In contrast, retinoic acid (RA) did not possess any mitogenic effect for quiescent MK-1 cells, nor did it modulate the actions of EGF or dexamethasone. A number of commercially available crude extracts of bovine brain and pituitary were also capable of initiating DNA synthesis in resting MK-1 cells. Finally, transforming growth factor type beta (TGFβ) proved to be a potent inhibitor of the mitogen-induced DNA synthesis in MK-1 cells (IC50∶10pM). This defined culture system is eminently suited to study the regulation of DNA synthesis of epidermal cells. In addition, it can be used as a sensitive bioassay for the detection of epidermal mitogens, as well as inhibitors of DNA synthesis such as TGFβ. Supported by PHS Award CA-41556 from the National Cancer Institute, Bethesda, MD.  相似文献   

11.
Parathyroid hormone-related protein (PTHrP) is expressed in more advanced, aggressive tumors and may play an active role in cancer progression. This study investigated the effects of PTHrP on apoptosis after UV irradiation, Fas ligation, or staurosporine treatment in BEN human squamous lung carcinoma cells. Cells at 70% confluency were treated for 24 h with 100 nM PTHrP-(1-34), PTHrP-(38-64), PTHrP-(67-86), PTHrP-(107-139), or PTHrP-(140-173) in media with serum, exposed for 30 min to UV-B radiation (0.9 mJ/cm2), and maintained for another 24 h. Caspase-3, caspase-8, and caspase-9 activities increased fivefold. Pretreatment with PTHrP-(1-34) and PTHrP-(140-173) ameliorated apoptosis after UV irradiation, as indicated by reduced caspase activities, increased cell protein, decreased nuclear condensation, and increased clonal survival. Other peptides had no effect on measures of apoptosis. PTHrP-(140-173) also reduced caspase activities after Fas ligation by activating antibody, but neither peptide had effects on caspase-3 or caspase-9 activity after 1 µM staurosporine. These data indicate that PTHrP-(1-34) and PTHrP-(140-173) protect against death receptor-induced apoptosis in BEN lung cancer cells but are ineffective against mitochondrial pathways. PTHrP contributes to lung cancer cell survival in culture and could promote cancer progression in vivo. The mechanism for the protective effect against apoptosis remains to be determined. caspases; cell surface receptors; growth substances  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) has been found to be expressed within the ovary and to modulate cell differentiation in ovarian cells. In the present study we have analyzed the influence of GnRH on DNA synthesis in rat granulosa cells. Cells were obtained from immature DES-treated rats and cultured in defined medium (DMEM:F12) containing combinations of FSH, estradiol, and transforming growth factor-β (TGF-β), both in the presence and absence of GnRH. A GnRH analog, Leuprolide (GnRHa), caused a dose-dependent inhibition of 3H-thymidine incorporation in cells cultured in the presence of FSH (20 ng/ml) and TGFβ (2.5 ng/ml), at concentrations as low as 5 × 10−11 M. Similarly, a complete inhibition of hormonally stimulated DNA synthesis were observed with another analog (Buserelin, ED50 = 1.58 ± 0.22 × 10−10 M) and native GnRH (ED50 = 1.4 ± 0.3 × 10−6 M). A competitive antagonist of GnRH (Antide) was used to neutralize the GnRH agonist effects. Antide 10−8 M could prevent the inhibition elicited by 10−7 M of Leuprolide. These results suggest that GnRH may play a role in the regulation of rat granulosa cell proliferation during follicular development. Mol. Reprod. Dev. 47: 170–174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
《Bone and mineral》1991,12(3):181-188
The biological properties of a new synthetic analog of parathyroid hormone-related protein [PTHrP(7–34)NH2] were examined in vivo using a well characterized thyroparathyroidectomized (TPTX) rat model. The phosphaturic and urine cyclic AMP response induced by infusion of PTHrP-(1–34)NH2 (0.16 nmol/h) was inhibited by 70% (P < 0.01, n = 6) by co-infusion of PTHrP-(7–34)NH2 at a 10-fold molar excess (1.6 nmol/h). The 7–34 PTHrP analog also antagonized the PTHrP-(1–34)NH2-induced hypercalcemia and rises in blood 1,25-dihydroxyvitamin D concentrations. However, when infused alone at a higher dose rate (8 nmol/h), PTHrP-(7–34)NH2 displayed significant PTH agonist activity. This profile contrasts to that of [Tyr-34]bPTH-(7–34)NH2 which is comparatively less potent (10–20-fold) with respect to its antagonist activity but has no appreciable agonist activity in vivo.  相似文献   

15.
Entrainment of output action potentials from repetitively firing pacemaker cells, brought about by regularly spaced excitatory or inhibitory postsynaptic inputs, is a well-known phenomenon. Synchronization of neural firing patterns by extremely low frequency (ELF) external electric fields has also been observed. Whereas current densities of ≈10 A-m−2 are required for direct excitation of otherwise quiescent neural tissue, much lower peak current densities (≈10−2 A-m2) have been reported to entrain spontaneously firing molluscan pacemaker cells. We have developed a neural spike generator circuit model that simulates repetitive spike generation by a space clamped patch (area ≈ 10−7 m2) of excitable membrane subjected to depolarizing current. Picoampere (pA) range variation of DC depolarizing current causes a corresponding smooth variation of neural spike frequency, producing a physiologically realistic stimulus-response (S-R) characteristic. When lower pA range 60 Hz AC current is superposed upon the DC depolarizing current, smooth variation of the S-R characteristic is distorted by subharmonic locking of the spike generator at 30, 20, 15, 12, 10 Hz, and higher order subharmonic frequencies. Although the additional superposition of a physiologically realistic level of “white” current noise, covering the bandwidth 4–200 Hz, suffices to obscure higher order subharmonic locking, locking at 30, 20, and 15 Hz is still clearly evident in the presence of noise. Subharmonic locking is observed at a root mean square AC simulated tissue current density of ≈10−5 A-m−2. Bioelectromagnetics 19:92–97, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

17.
Salmonella typhimurium SR-11 is extremely virulent at a dose as low as 105 colony forming units (cfu) when administered perorally to BALB/c mice. Utilizing mini-transposon mutagenesis, a mutant of S. typhimurium SR-11 was isolated that was unable to utilize oleate and citrate as carbon sources. This mutant, designated S. typhimurium SR-11 Fad (Fatty acid), was found to utilize sugars under cya/crp control as sole carbon sources, suggesting that the mutation is not in either of these genes. In addition, SR-11 Fad utilized pyruvate and succinate, but was unable to utilize either acetate or isocitrate as sole carbon source. In contrast to SR-11, SR-11 Fad was found to be avirulent, i.e. BALB/c mice were completely healthy after oral infection with 109 S. typhimurium SR-11 Fad cells. Moreover, 21 days after SR-11 Fad infection, BALB/c mice were found to be protected against an oral challenge with 109 cells of S. typhimurium SR-11.  相似文献   

18.
Biological membrane stabilization is essential for maintenance of cellular homeostasis, functionality and appropriate response to various stimuli. Previous studies have showed that accumulation of PKCs in the cell membrane significantly downregulates the membrane fluidity and Ca2+ influxes through the membranes in activated cells. In addition, membrane-inserted form of PKCs has been found in a variety of resting mammalian cells and tissues. This study is aimed to investigate possible role of the endogenous membrane-associated PKCs in the modulation of basal membrane fluidity. Here, we showed that interfering PKC expression by chronic activation of PKC with phorbol myristate acetate (PMA) or shRNA targeting at PKCα lowered the levels of PKCα in cytosol, peripheral membrane and integral membrane pools, while short-term activation of PKC with PMA induced accumulation of PKCα in the membrane pool accompanied by a dramatic decrease in the cytosol fraction. The lateral membrane mobility increased or decreased in accordance with the abundance alterations in the membrane-associated PKCα by these treatments. In addition, membrane permeability to divalent cations including Ca2+, Mn2+ and Ba2+ were also potentiated or abrogated along with the changes in PKC expression on the plasma membrane. Membrane stabilizer ursodeoxycholate abolished both of the enhanced lateral membrane mobility and permeability to divalent cations due to PKCα deficiency, whereas Gö6983, a PKC antagonist, or Gd3+ and 2-aminoethyoxydipheyl borne, two Ca2+ channels blockers, showed no effect, suggesting that this PKC-related regulation is independent of PKC activation or a modulation of specific divalent cation channel. Thus, these data demonstrate that the native membrane-associated PKCα is involved in the maintenance of basal membrane stabilization in resting cells.  相似文献   

19.
《Life sciences》1996,59(16):PL255-PL261
The effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type IV inhibitors and of the cell permeable analogue of cAMP, db-cAMP, were investigated on fMLP-induced arachidonate release from human monocytes. When monocytes were preincubated with the combined PKA/PKG inhibitor H8 (10−6 to 10−4 M) or the selective PKG inhibitor Rp-8-cpt-cGMPs (10−6 to 10−4 M) a concentration-dependent reduction of the inhibitory effect of db-cAMP (10 M), rolipram (10−5 M) and Ro 20-1724 (10−5 M) was noted. When monocytes were preincubated with the selective PKA inhibitor H89 (10−6 to 10−4 M), only a small inhibition of the effect of db-cAMP and no inhibition of the effects of rolipram and Ro 20–1724 were observed. The present data indicate that db-cAMP and PDE IV inhibitors elicit an in vitro anti-inflammatory activity by a PKA-independent mechanism, which do not appear to be mainly mediated via the PKG activation.  相似文献   

20.
S R Wagle 《Life sciences》1975,17(6):827-835
Hepatocytes were isolated from normal fed, fasted and alloxan diabetic animals. The best cell preparations were obtained by using low concentrations of collagenase (10–20 mg) and exposing the liver for a very short period of time (10–15 min). Addition of hyaluronidase significantly decreased the glycogen content of the isolated hepatocytes. Glucagon (10−12M) stimulated glycogenesis in hepatocytes containing high glycogen whereas, in cells containing low glycogen much higher concentration of glucagon was needed (10−9M). Addition of insulin (100 μunits) stimulated both glycogen and protein synthesis in isolated hepatocytes containing high glycogen. Under these conditions glycogen synthase activity was stimulated by 40%. Incorporation of 14C phenylalanine into protein was linear for only 3–4 hr in cells containing low glycogen whereas, in cells containing high glycogen incorporating was linear for 8–10 hr. These studies suggest that intracellular glycogen plays an important role in the hormonal regulation of metabolism in hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号