首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasoactive intestinal peptide (VIP) has been shown to increase the survival of developing neurons grown in dissociated spinal cord cultures. This result was evident when synaptic activity was blocked with tetrodotoxin (TTX) during a critical period of development (days 7-21 after plating). Other neuropeptides, with a close sequence homology to VIP, have now been tested for their effects on neuronal survival in culture. Within the critical period, the survival of spinal cord neurons was significantly decreased (30-35%) after incubation with 1 nM peptide histidyl-isoleucine amide (PHI-27) or 0.1 nM growth hormone releasing factor (GRF). Neuronal cell death produced by these peptides did not exceed that observed from tetrodotoxin treatment alone. Secretin had no detectable effect on neuronal survival at any of the concentrations tested. In tetrodotoxin-treated cultures, PHI-27 and GRF prevented the neuronal cell death produced by TTX, but only at concentrations greater than 0.1 microM. In contrast, VIP significantly increased neuronal survival at concentrations less than 0.01 nM. The presence of 0.1 nM PHI-27 significantly decreased the effectiveness of VIP in preventing TTX-mediated neuronal cell death. Addition of PHI-27 or VIP, with or without TTX, to one month-old cultures produced no significant change in the number of neurons compared to control cultures. These studies indicate that the survival-promoting effect of VIP is highly structure-dependent and that this action appears to be confined to a critical period of development.  相似文献   

2.
Bax is a proapoptotic protein that is required for programmed cell death (PCD) of many neuronal populations. Here we show that, during an early period of retinal PCD and in naturally occurring sensory and motor neuron (MN) death in the spinal cord, Bax delivery results in enhanced death of these neural populations. In contrast, Bax overexpression fails to enhance an early phase of MN death that occurs in the cervical spinal cord, although overexpressed Bax appears to be activated in dying MNs. Bax overexpression does not also affect the survival of immature neurons prior to the PCD period. Taken together, these data provide the first in vivo evidence suggesting that Bax appears to act selectively as an executioner only in neurons undergoing PCD. Furthermore, although Bax appears to mediate the execution pathway for PCD, the effect of Bax overexpression on susceptibility to death differs between different neuronal populations.  相似文献   

3.
Apoptosis, often also termed “programmed cell death,” occurs in normal development in the brain and spinal cord. Important to concepts of disease and potential intervention is the exciting finding that apoptosis is also found after neurotrauma and in a number of neurodegenerative diseases. Although the precise mechanism of neuronal cell loss remains unknown, much emphasis has been placed recently on the activation of cell death protease cascades within the cell. How these cascades may be activated, especially from extracellular influences, is currently poorly understood. Thrombin, the multifunctional coagulation protease, is an early phase modulator at sites of tissue injury and has been shown to induce cell death in neurons by an apoptotic mechanism by activating its receptor, PAR-1. Using a model motor neuronal cell line, NSC19, which we have shown undergoes apoptosis after treatment with classic apoptosis inducers such as the topoisomerase inhibitors camptothecin and etoposide, we unambiguously found that nanomolar thrombin induced characteristic signs of apoptosis. Strikingly, endonucleolysis was accompanied by an increase in caspase-3-like activity in cellular extracts, which correlated with both detection of caspase-induced signature cleavage of the cortical cytoskeleton component nonerythroid spectrin (α-fodrin) and identification of increased accessibility of a caspase cleavage domain, using an antibody (Ab127) made against a synthetic peptide KGDEVD. Demonstrating that thrombin activation of death proteases was linked to cell death, we were able to inhibit thrombin-induced apoptosis by using a caspase family inhibitor, benzyloxycarbonyl-Asp-(oMe)-flouromethyl ketone (Boc-D-FMK). These novel results demonstrate that thrombin serves as an extracellular “death signal” to activate intracellular protease pathways. These pathways lead to apoptotic cell death and can be modulated by inhibiting caspase activity downstream to PAR-1. Published 1998 John Wiley & Sons, Inc. J Neurobiol 36: 64–80, 1998
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit. However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin, whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation. We show that by neutralizing TNFα this increased susceptibility of Necdin-deficient motoneurons to trophic factor deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway in the developmental death of motoneurons.  相似文献   

    5.
    The interleukin-1beta converting enzyme (ICE) gene family, (homologues of C. elegans cell death gene product Ced-3) plays an important role in controlling programmed cell death. Nerve growth factor (NGF) promotes survival of cultured embryonic chicken dorsal root ganglion neurons. Ciliary ganglion neurons depend exclusively on ciliary neurotrophic factor (CNTF) for survival. Complete depletion of NGF or CNTF from culture medium induces apoptosis in both types of neurons. We can prevent apoptosis, due either to NGF or CNTF withdrawal and in either type of neuron, by overexpression of a mutant inactive ICE and an ICE inhibitor, the product of cowpox virus gene crmA. Bcl-2 does not prevent apoptosis in CNTF-dependent ciliary neurons or DRG neurons as it does in NGF-dependent neurons. These results suggest that neuronal cell death is mediated through a common effector mechanism involving the Ice family of genes, whereas different suppression mechanisms are engaged depending upon the specific neurotrophic factors present.  相似文献   

    6.
    Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide   总被引:10,自引:0,他引:10  
    The developmental regulation of neuronal survival by vasoactive intestinal peptide (VIP) was investigated in dissociated spinal cord-dorsal root ganglion (SC-DRG) cultures. Previous studies demonstrated that VIP increased neuronal survival in SC-DRG cultures when synaptic transmission was blocked with tetrodotoxin (TTX). This effect was further investigated to determine if VIP acted directly on neurons or via nonneuronal cells. For these studies, SC-DRG cells were cultured under conditions designed to provide preparations enriched for a particular cell type: astrocyte-enriched background cell (BG) cultures, meningeal fibroblast cultures, standard mixed neuron-nonneuron (STD) cultures, and neuron-enriched (N) cultures. Addition of 0.1 nM VIP to TTX-treated STD cultures for 5 d prevented the TTX-mediated death and the death that occurred naturally during development in culture, whereas the same treatment on N cultures did not prevent neuronal cell death. Conditioned medium from VIP-stimulated BG cultures prevented neuronal cell death when added to the medium (10% of total volume) of N cultures treated with TTX. The same amount of conditioned medium from BG cultures that were not treated with VIP had no protective action on N cultures. Conditioned medium from N or meningeal fibroblast cultures, either with or without VIP treatment, did not prevent TTX-mediated cell death in N test cultures. These data indicate that VIP increases the availability of neurotrophic survival-promoting substances derived from nonneuronal cultures, the most likely source being astroglial cells. This study suggests that VIP has a role in mediating a neuron-glia-neuron interaction that influences the trophic regulation of neuronal survival.  相似文献   

    7.
    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.  相似文献   

    8.
    Modulation of extracellular matrix (ECM) remodeling after peripheral nerve injury (PNI) could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS). Inhibition of matrix metalloproteinases (MMPs) and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI) of the sciatic nerve and how the intrathecal (i.t.) administration of GM6001 (a MMPs inhibitor) or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1), increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI.  相似文献   

    9.
    In the rodent central nervous system (CNS) during the five days prior to birth, both growth hormone (GH) and its receptor (GHR) undergo transient increases in expression to levels considerably higher than those found postnatally. This increase in expression coincides with the period of neuronal programmed cell death (PCD) in the developing CNS. To evaluate the involvement of growth hormone in the process of PCD, we have quantified the number of motoneurons in the spinal cord and brain stem of wild type and littermate GHR-deficient mice at the beginning and end of the neuronal PCD period. We found no change in motoneuron survival in either the brachial or lumbar lateral motor columns of the spinal cord or in the trochlear, trigeminal, facial or hypoglossal nuclei in the brain stem. We also found no significant differences in spinal cord volume, muscle fiber diameter, or body weight of GHR-deficient fetal mice when compared to their littermate controls. Therefore, despite considerable in vitro evidence for GH action on neurons and glia, genetic disruption of GHR signalling has no effect on prenatal motoneuron number in the mouse, under normal physiological conditions. This may be a result of compensation by the signalling of other neurotrophic cytokines.  相似文献   

    10.
    Serine protease inhibitor Spi2 mediated apoptosis of olfactory neurons   总被引:2,自引:0,他引:2  
    The olfactory epithelium of adult mouse, where primary sensory neurons are massively committed to apoptosis by removal of their synaptic target, was used as a model to determine in vivo mechanisms for neuronal cell death induction. A macro-array assay revealed that the death of olfactory neurons is accompanied with over-expression of the serine protease inhibitor Spi2. This over-expression is associated with decreased serine protease activity in the olfactory mucosa. Moreover, in vitro or in vivo inhibition of serine proteases induced apoptotic death of olfactory neuronal cells. Interestingly, Spi2 over-expression is not occurring in olfactory neurons but in cells of the lamina propria, suggesting that Spi2 may act extracellularly as a cell death inducer. In that sense, we present evidence that in vitro Spi2 overexpression generates a secreted signal for olfactory neuron death. Hence, taken together these results document a possible novel mechanism for apoptosis induction that might occur in response to neurodegenerative insults.  相似文献   

    11.
    Permanent functional deficit in patients with spinal cord injury (SCI) is in part due to severe neural cell death. Therefore, cell replacement using stem cells and neural progenitors that give rise to neurons and glia is thought to be a potent strategy to promote tissue repair after SCI. Many studies have shown that stem cells and neural progenitors can be isolated from embryonic, postnatal and adult spinal cords. Recently, we isolated neural progenitors from newborn rat spinal cords. In general, the neural progenitors grew as spheres in culture, and showed immunoreactivity to a neural progenitor cellular marker, nestin. They were found to proliferate and differentiate into glial fibrillary acidic protein-positive astroglia and multiple neuronal populations, including GABAergic and cholinergic neurons. Neurotrophin 3 and neurotrophin 4 enhanced the differentiation of neural progenitors into neurons. Furthermore, the neural progenitors that were transplanted into contusive spinal cords were found to survive and have migrated in the spinal cord rostrally and caudally over 8 mm to the lesion center 7 days after injury. Thus, the neural progenitors isolated from newborn rat spinal cords in combination with neurotrophic factors may provide a tool for cell therapy in SCI patients.  相似文献   

    12.
    VIP as a trophic factor in the CNS and cancer cells   总被引:5,自引:0,他引:5  
    Moody TW  Hill JM  Jensen RT 《Peptides》2003,24(1):163-177
    The effects of vasoactive intestinal peptide (VIP) on the proliferation of central nervous system (CNS) and cancer cells were investigated. VIP has important actions during CNS development. During neurogenesis, VIP stimulates the proliferation and differentiation of brain neurons. Addition of VIP to embryonic mouse spinal cord cultures increases neuronal survival and activity dependent neurotrophic factor (ADNF) secretion from astroglial cells. VIP is an integrative regulator of brain growth and development during neurogenesis and embryogenesis. Also, VIP causes increased proliferation of human breast and lung cancer cells in vitro. VIP binds with high affinity to cancer cells, elevates the cAMP and increases gene expression of c-fos, c-jun, c-myc and vascular endothelial cell growth factor. The effects of VIP on cancer cells are reversed by VIPhybrid, a synthetic VPAC(1) receptor antagonist. VIPhyb inhibits the basal growth of lung cancer cells in vitro and tumors in vivo and potentiates the ability of chemotherapeutic drugs to kill cancer cells. Due to the high density of VPAC(1) receptors in cancer cells, VIP has been radiolabeled with 123I, 18F and 99mTc to image tumors. It remains to be determined if radiolabeled VIP analogs will be useful agents for early detection of cancer in patients.  相似文献   

    13.
    A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

    14.
    Sheridan RE  Adler M 《Life sciences》2006,79(6):591-595
    In primary embryonic spinal cord cultures, synaptic transmission can be conveniently studied by monitoring radiolabeled neurotransmitter release or by recording of electrophysiological responses. However, while the mature spinal cord contains an appreciable number of cholinergic motoneurons, cultures of embryonic spinal cord have a paucity of these neurons and release little or no acetylcholine upon stimulation. To determine whether the proportion of cholinergic neurons in primary mouse spinal cord cultures can be augmented, the effects of several classes of growth factors were examined on depolarization- and Ca(2+)-evoked release of choline/acetylcholine (Ch/ACh). In the absence of growth factors, little or no evoked release of radiolabeled Ch/ACh could be demonstrated. Media supplemented with brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) were examined for their ability to preserve the population of neurons in culture. CNTF was found to increase the number of surviving neurons and to enhance the release of radiolabeled Ch/ACh; the other factors were without effect. The action of CNTF was transient, and the neuronal population decreased to levels observed in cultures lacking growth factor after 20 days in vitro. The correlation between enhanced neuron survival and increased Ch/ACh release suggests that CNTF protected cholinergic neurons, albeit transiently, from cell death.  相似文献   

    15.
    Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This “naturally-occurring” or “programmed” cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.  相似文献   

    16.
    Developmental motoneuron cell death and neurotrophic factors   总被引:5,自引:0,他引:5  
    During the development of higher vertebrates, motoneurons are generated in excess. In the lumbar spinal cord of the developing rat, about 6000 motoneurons are present at embryonic day 14. These neurons grow out axons which make contact with their target tissue, the skeletal muscle, and about 50% of the motoneurons are lost during a critical period from embryonic day 14 until postnatal day 3. This process, which is called physiological motoneuron cell death, has been the focus of research aiming to identify neurotrophic factors which regulate motoneuron survival during this developmental period. Motoneuron cell death can also be observed in vitro when the motoneurons are isolated from the embryonic avian or rodent spinal cord. These isolated motoneurons and other types of primary neurons have been a useful tool for studying basic mechanisms underlying neuronal degeneration during development and under pathophysiological conditions in neurodegenerative disorders. Accumulating evidence from such studies suggests that some specific requirements of motoneurons for survival and proper function may change during development. The focus of this review is a synopsis of recent data on such specific mechanisms.  相似文献   

    17.
    The mechanisms of motor neuronal death in amyotrophic lateral sclerosis (ALS) remain to be unclear. Phosphatidy-linositol 3-kinase (PI3-K) and its main downstream effector, Akt/protein kinase B (PKB) have been shown to play a central role in neuronal survival against apoptosis supported by neurotrophic factors. In order to investigate a possible impairment of survival signaling, we examined expressions of PI3-K and Akt in the spinal cord of the transgenic mice overexpressing a mutant Cu/Zn superoxide dismutase (SOD1) gene, a valuable model for human ALS. Immunoblotting and immunohistochemical analyses showed that the majority of spinal motor neurons lost the immunoreactivities for both PI3-K and Akt in the early and presymptomatic stage that preceded significant loss of the neurons. The present results suggest that an early decrease of survival signal proteins in the spinal motor neurons may account for the subsequent motor neuronal loss in this animal model of ALS.  相似文献   

    18.
    Hydrolysis of membrane phospholipids of spinal cord neurons is one of the first events initiated in spinal cord trauma. In this process, free fatty acids, and in particular arachidonic acid, are released. Exposure of spinal cord neurons to free arachidonic acid can compromise cell survival and initiate apoptotic cell death. In order to determine potential mechanisms of apoptosis induced by arachidonic acid, activation of caspases -3, -8, and -9, as well as the release of cytochrome c into the cytoplasm were measured in cultured spinal cord neurons exposed to 10 microM of this fatty acid. In addition, because nicotine can exert a variety of neuroprotective effects, we hypothesized that it can prevent arachidonic acid induced apoptosis of spinal cord neurons. To study this hypothesis, spinal cord neurons were pretreated with nicotine (10 microM for 2 h) before arachidonic acid exposure and caspase activation as well as markers of apoptotic cell death were studied. Treatment of spinal cord neurons with arachidonic acid for up to 24 h significantly increased cytoplasmic levels of cytochrome c, induced caspase activation and induced DNA laddering, a hallmark of apoptotic cell death. Nicotine pretreatment markedly attenuated all these effects. In addition, antagonist studies suggest that the alpha7 nicotinic receptor is primarily responsible for these anti-apoptotic effects of nicotine. These results indicate that nicotine can exert potent neuroprotective effects by inhibiting arachidonic acid induced apoptotic cascades of spinal cord neurons.  相似文献   

    19.
    Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.  相似文献   

    20.
    Previous reports have shown that neuronal and glial cells express functionally active thrombin receptors. The thrombin receptor (PAR-1), a member of a growing family of protease activated receptors (PARs), requires cleavage of the extracellular amino-terminus domain by thrombin to induce signal transduction. Studies from our laboratory have shown that PAR-1 activation following the addition of thrombin or a synthetic thrombin receptor activating peptide (TRAP) induces motoneuron cell death both in vitro and in vivo. In addition to increasing motoneuron cell death, PAR- 1 activation leads to decreases in the mean neurite length and side branching in highly enriched motoneuron cultures. It has been suggested that motoneuron survival depends on access to sufficient target-derived neurotrophic factors through axonal branching and synaptic contacts. However, whether the thrombininduced effects on motoneurons can be prevented by neurotrophic factors is still unknown. Using highly enriched avian motoneuron cultures, we show here that alone, soluble chick skeletal muscle extracts (CMX), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF) significantly increased motoneuron survival compared to controls, whereas nerve growth factor (NGF) did not have a significant effect on motoneuron survival. Furthermore, cotreatment with muscle-derived agents (i.e., CMX, BDNF, GDNF) significantly prevented the death of motoneurons induced by alpha-thrombin. Yet, non-muscle-derived agents (CNTF and NGF) had little or no significant effect in reversing thrombin-induced motoneuron death. CMX and CNTF significantly increased the mean length of neurites, whereas NGF, BDNF, and GDNF failed to enhance neurite outgrowth compared to controls. Furthermore, CMX and CNTF significantly prevented thrombin-induced inhibition of neurite outgrowth, whereas BDNF and GDNF only partially reversed thrombin-induced inhibition of neurite outgrowth. These findings show differential effects of neurotrophic factors on thrombin-induced motoneuron degeneration and suggest specific overlaps between the trophic and stress pathways activated by some neurotrophic agents and thrombin, respectively.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号