首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract: Nerve terminals (“synaptosomes”) isolated from rat brain hippocampus were loaded with the fluorescent Ca2+ indicator fura-2 and were subjected to depolarization with an elevated K+ concentration in a stopped-flow spectrophotometer to measure the activity of voltage-gated Ca2+ channels in the presynaptic membrane. Three components of Ca2+ influx were seen, which were tentatively identified as two classes of voltage-dependent Ca2+ channels with different inactivation kinetics (τ of ~60 ms and 1 s, respectively) and Na+/Ca2+ exchange working in the “reverse” mode. The activity of both classes of voltage-dependent Ca2+ channels was slightly augmented by the phorbol ester phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), but the effect of PMA was markedly enhanced by the protein phosphatase inhibitor okadaic acid (OKA). The PKC inhibitors calphostin C and dihydrosphingosine (DHS) caused a prompt decrease in voltage-dependent Ca2+ channel activity, but the effect of DHS could be showed by coaddition of OKA. These results suggest that the activity of presynaptic voltage-dependent Ca2+ channels in the hippocampus is under a dynamic balance between PKC phosphorylation (leading to activation) and protein phosphatase dephosphorylation (leading to inactivation) and that both of these metabolic pathways are tonically active in the nerve terminals.  相似文献   

2.
The tumuour-promoting sesquiterpene lactone, thapsigargin, induced a dose-dependent increase of the cytoplasmic Ca2+ concentrations ([Ca2+]i) in human lymphocytes from a resting level between 100 and 150 nM up to about 1 μM. Half-maximum response was found at about 1 nM of thapsigargin, full response at 100 nM. The effect of thapsigargin on [Ca2+], expected that of phytohaemagglutinin (PHA) which raised [Ca2+]i to maximum 300 nM. In combination with phorbol 12-myristate 13-acetate (PMA), thapsigargin stimulated the proliferation of normal lymphocytes to the same extent as did PHA, whereas the thapsigargin /PMA treatment could not restore the defective proliferation of AIDS lymphocytes in spite of the increased [Ca2+]i. Thapsigargin or PMA added separately had no stimulatory effects on cell profileration. The thapsigargin/PMA treatment caused an increase in interleukin-2 (IL-2) production of the lymphocytes, which was much higher than that caused by the PHA treatment, even in AIDS lymphocytes. Moreover, the thapsigargin/PMA treatment stimulated the expression of the IL-2 receptors on both normal and AIDS lymphocytes, similar to the effect of PHA. It is concluded that thapsigargin exerts its effects on lymphocyte proliferation by increasing [Ca2+]i, and that the general defect of AIDS lymphocytes, rather than being ascribed to the initiating signal systems, is associated with later events related to DNA synthesis and proliferation.  相似文献   

3.
Abstract : We introduce the use of the pH-sensitive dye acridine orange (AO) to monitor exo/endocytosis of acidic neurotransmitter-containing vesicles in synaptosomes. AO is accumulated exclusively in acidic v-ATPase-dependent bafilomycin (Baf)-sensitive compartments. A fraction of the accumulated AO is rapidly released (fluorescence increase) upon depolarization with KCl in the presence of Ca2+. The release (completed in 5-6 s) is followed by reuptake to values below the predepolarization baseline. The reuptake, but not the release, is inhibited by Baf added 5 s prior to KCl. In a similar protocol, Baf does not affect the initial fast phase of glutamate release measured enzymatically, but it abolishes the subsequent slow phase. Thus, the fast AO release corresponds to the rapid phase of glutamate release and the slow phase depends on vesicle cycling. AO reuptake depends in part on the progressive accumulation of acid-loaded vesicles during cycling. Stopping exocytosis at selected times after KCl by Ca2+ removal with EGTA evidences endocytosis : Its T1/2 was 12 ± 0.6 s. The KA+, channel inhibitors 4-aminopyridine (100 μM) and α-dendrotoxin (10-100 nM) are known to induce glutamate release by inducing the firing of Na+ channels ; their action is potentiated by the activation of protein kinase C. Also these agents promote a Ca2+-dependent AO release, which is prevented by the Na+ channel inhibitor tetrodotoxin and potentiated by 4β-phorbol 12-myristate 13-acetate (PMA). With α-dendrotoxin, endocytosis was monitored by stopping exocytosis at selected times with EGTA or alternatively with Cd2+ or tetrodotoxin. The T1/2 of endocytosis, which was unaffected by PMA, was 12 ± 0.4 s with EGTA and Cd2+ and 9.5 ± 0.5 s with tetrodotoxin. Protein kinase C activation appeared to facilitate vesicle turnover.  相似文献   

4.
L-type Ca2+ channel activity was assayed in L6 cells as the rate of nifedipine-sensitive Ba2+ influx in a depolarizing medium. In the absence of extracellular Ca2+, activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or thymeleatoxin (TMX) inhibited Ba2+ influx by 38%. Thapsigargin (Tg), a selective inhibitor of the Ca2+-ATPase in the sarcoplasmic reticulum, evoked a rise in the cytosolic Ca2+ concentration ([Ca2+]i) in a Ca2+-free medium from 30 to 80 nM. This [Ca2+]i increase declined slowly, giving rise to a modest elevation of [Ca2+]i that persisted for >5 min. The inhibitory effects of PMA and TMX on channel activity were abolished when tested in Tg-treated cells in a Ca2+-free medium. However, when the Ca2+ ionophore, ionomycin, was applied with Tg, PMA and TMX retained their inhibitory effect on L-type Ca2+ channel activity, suggesting that a lower amplitude and prolonged release of Ca2+ stores is necessary for abrogating PKC-mediated inhibition of LCC. Cyclosporin A (5 μM) and ascomycin (5 μM), inhibitors of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, fully restored the inhibitory effect of PMA and TMX on channel activity. Addition of 1 mM CaCl2 to the Tg-treated cells increased [Ca2+]i to 165 nM and also restored the inhibitory effects of PMA and TMX. These results indicate that a small, relatively prolonged [Ca2+]i increase elicited by passive depletion of internal Ca2+ stores led to activation of calcineurin, giving rise to an increase in protein phosphatase activity that counteracted the inhibitory effects of PKC on channel activity. A larger increase in [Ca2+]i via store-dependent Ca2+ entry enhanced the activity of PKC sufficiently to overcome the protein phosphatase activity of calcineurin. This study is the first to demonstrate that the regulation of L-type Ca2+ channels in a myocyte model involves a balance between the differential Ca2+ sensitivities and opposing actions of PKC and calcineurin.  相似文献   

5.
In membranes of rat striatum, phorbol 12-myristate 13-acetate (PMA), a potent activator of Ca2+/phospholipid-dependent protein kinase, enhanced adenylate cyclase activity by counteracting the inhibition elicited by GTP. Exposure to pertussis toxin caused a similar alteration of the GTP-regulation of the enzyme activity and largely prevented the PMA effects. PMA treatment increased by threefold the GTP requirement of acetylcholine-induced inhibition of adenylate cyclase activity but did not affect the GTP-dependence of the enzyme stimulation by dopamine. The hydrolysis of GTP by membrane-bound high affinity GTPase was significantly inhibited by PMA (IC 50 10 nM) in a Ca2+-dependent manner. Like PMA, phorbol 12, 13-dibutyrate inhibited the GTPase activity, whereas the biologically inactive 4- phorbol 13-acetate and 4- phorbol were without effect. These results suggest that activation of Ca2+/phospholipid-dependent protein kinase by PMA stimulates adenylate cyclase activity by impairing the activity of the GTP-dependent inhibitory protein, possibly through a reduction of the GTP-GDP exchange.  相似文献   

6.
The effect of phorbol 12-myristate 13-acetate (PMA) on Ca2+-ATPase activity in rat liver nuclei was investigated. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+-Mg2+)-ATPase activity. The nuclear Ca2+-ATPase activity was significantly increased by the presence of PMA (2–20 μM) in the enzyme reaction mixture; the maximum effect was seen at 10 μM. The PMA (10 μM)-increased Ca2+-ATPase activity was not blocked by the presence of staurosporine (2 μM) or dibucaine (2 and 10 μM), an inhibitor of protein kinase. Meanwhile, vanadate (20 and 100 μM) caused a significant reduction in the nuclear Ca2+-ATPase activity increased by PMA (10 μM). The present finding suggests that PMA has an activating effect on liver nuclear Ca2+-ATPase independent of protein kinase. © 1994 Wiley-Liss, Inc.  相似文献   

7.
In the present work we have investigated the actions of the oxidizing sulfhydryl reagent thimerosal on different mechanisms which regulate intracellular free Ca2+ concentration ([Ca2+]i) in GH4C1 pituitary cells. In intact Fura-2 loaded cells, low concentrations of thimerosal potentiated the spike phase of the TRH-induced (thyrotropin-releasing hormone) rise in [Ca2+]i, whereas high thimerosal concentrations inhibited it. The effect of thimerosal on the plateau phase was always inhibitory.The effect of thimerosal on the IP3-induced calcium release (IICR) was studied in permeabilized cells using the Ca2+ indicator Fluo-3. A low concentration of thimerosal (10 μM) stimulated IICR: the Ca2+ release induced by 300 nM inositol-1,4,5-trisphosphate (IP3) was enhanced in cells treated with thimerosal for 1 or 6 min (67 ± 11 nM and 34 ± 5 nM, respectively) as compared to control cells (17 ± 2 nM). On the other hand, a high concentration of thimerosal (100 μ inhibited IICR: when IP3 (10 μM) was added after a 5 min preincubation with thimerosal, the IP3-induced rise in [Ca2+]i (46 ± 14 nM) was 57% smaller as compared with that seen in control cells (106 ± 10 nM).The effect of thimerosal on the voltage-operated Ca 2+ channels (VOCCs) was studied by depolarizing intact Fura-2 loaded cells by addition of 20 mM K+ to the cuvette. The depolarization-evoked increase in [Ca2+]i was inhibited in a dose-dependent manner by thimerosal. Direct evidence for an inhibitory effect of thimerosal on VOCCs was obtained by using the whole-cell configuration of the patch-clamp technique: thimerosal (100 μM) potently inhibited the Ba2+ currents through VOCCs.In addition, our results indicated that thimerosal inhibited the caffeine-induced increase in [Ca2+]i, and activated a capacitative Ca2+ entry pathway. The actions of thimerosal were apparently due to its oxidizing activity because the effects were mostly reversed by the thiol-reducing agent dithiothreitol (DTT).We conclude that, in GH4C1 pituitary cells, the mobilization of intracellular calcium and the different Ca2+ entry pathways are sensitive to redox modulation.  相似文献   

8.
Ca2+-Induced insulin release from electropermeabilised islets is inhibited by the transglutaminase inhibitors monodansylcadaverine, glycine methylester, methylamine and cystamine but not by the control compounds dimethyl monodansylcadaverine and sarcosine methylester which lack the primary amine group. Neither monodansylcadaverine nor glycine methylester inhibited insulin secretion induced by either cAMP or the phorbol ester PMA at basal levels (10 nM) of Ca2+. These data provide further evidence for the involvement of transglutaminase in Ca2+ induced insulin secretion, they also suggest that insulin secretion induced by either cAMP or PMA may act in part by a mechanism independent of that induced by Ca2+.  相似文献   

9.
Receptor-mediated elevations of intracellular Ca2+ in endothelial cells may be controlled by a negative feedback mechanism through activation of protein kinase C (PKC). To test this hypothesis, we studied the effects of an activation or inhibition of PKC on the release of nitric oxide (NO) and prostacyclin (PGI2) from cultured bovine and porcine aortic endothelial cells (EC). Preincubation with the PKC activators phorbol-12-myristate-13-acetate (PMA) (3-300 nM) or 1-oleyl-2-acetyl-glycerol (OAG) (30 μM) significantly attenuated the release of NO and PGI2 from EC stimulated with bradykinin (0.3–30 nM), whereas phorbol-12, 13-didecanoate (PDD) (30–300 nM), which does not activate PKC, had no effect. UCN-01 (10 nM), a specific PKC inhibitor, significantly augmented the bradykinin-stimulated release of NO from EC. These effects were correlated with a reduced (PMA) or enhanced (UCN-01) elevation of intracellular Ca2+ in response to bradykinin in both types of EC. Neither the PKC activators nor the inhibitor had any effect on resting intracellular Ca2+ or basal endothelial autacoid release. Several isoforms of PKC (namely PKCα, PKCδ, PKC?, and PKCζ) were detected in bovine, human, and porcine EC by immunoblotting analysis with isotype-specific anti-PKC antibodies, which, except PKC?, were predominantly located in the cytosol. Incubation of bovine EC with PMA elicited a significant increase in membrane-bound PKCα immunoreactivity, whereas there was no translocation of PKCα from the cytosolic to the membrane fraction with bradykinin. As determined by histone phosphorylation, PKC activity was similarly reduced in the cytosol, but increased in the membrane fraction of bovine EC exposed to PMA, whereas bradykinin had no significant effect. These findings indicate that endothelial autacoid release can be modulated by activators and inhibitors of PKC. However, stimulation of EC with bradykinin does not lead to a detectable activation of PKC, suggesting that PKC does not exert a negative feedback in the signal transduction pathway of this receptor-dependent agonist. © 1993 Wiley-Liss, Inc.  相似文献   

10.
《Life sciences》1997,61(15):PL199-PL204
Contrasting effects of okadaic acid (OKA) on neutrophil (PMN) superoxide anion (O2) generation have been reported. In this study, we examined the effect of OKA on phorbol myristate acetate (PMA)-stimulated O2 generation in rat PMNs primed with LPS in vivo (LPS-PMN) and saline-treated rat PMNs (SAL-PMN). The following results were observed: (1) OKA, but neither genistein nor vanadate, markedly reduced O2 generation in a dose and time-dependent manner; (2) genistein, a tyrosine kinase inhibitor, as well as OKA, reduced tyrosine phosphorylation; (3) sodium orthovanadate, a tyrosine phosphatase inhibitor, potently enhanced tyrosine phosphorylation. Our studies suggest that OKA might reduce tyrosine phosphorylation by affecting the activity of tyrosine phosphatases regulated by serine-threonine phosphorylation. © 1997 Elsevier Science Inc.  相似文献   

11.
1.  The light-dependent demolition of rhabdoms induced by a protein phosphatase inhibitor, okadaic acid (OKA) in retinas of a crab (Leptograpsus variegatus) is examined to determine whether the effects of OKA merely amplify the endocytosis of normal phototransductive membrane turnover, or are distinct from it.
2.  OKA-induced demolition by dawn retinas maintained in vitro is partially blocked by either of two protein kinase C inhibitors, staurosporine and H-7. It is similarly blocked by a Ca2+-channel blocking agent, diltiazem.
3.  Large night rhabdoms illuminated at 40 lux for up to 20 min are reduced by pinocytosis which is not inhibited by either staurosporine or diltiazem, each in the absence of OKA.
4.  Pinocytosis is not blocked by a high concentration of a specific tyrosine kinase inhibitor, genistein in absence of OKA.
5.  It is inferred that (i) phosphorylations of rhabdomeral proteins drive light-dependent, OKA-induced endocytosis; (ii) phosphorylations (including that of rhodopsin) do not drive normal, light-dependent endocytosis; (iii) tyrosine phosphorylations of a notional, minor population of rhabdomeral proteins are unlikely to determine, normal, light-dependent endocytosis of phototransductive membrane; (iv) entry of Ca2+ into R1-7 photoreceptors via either light-dependent or other channels is necessary for events provoked by OKA, but irrelevant to normal light-dependent endocytosis.
  相似文献   

12.
Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.  相似文献   

13.
The effect of regucalcin, which is a regulatory protein of Ca2+ signaling, on Ca2+‐ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca2+‐ATPase activity. Regucalcin significantly stimulated ATP‐dependent 45Ca2+ uptake by the mitochondria. Ruthenium red (10−6 M) or lanthunum chloride (10−6 M), an inhibitor of mitochondrial Ca2+ uptake, markedly inhibited regucalcin (100 nM)‐increased mitochondrial Ca2+‐ATPase activity and 45Ca2+ uptake. The effect of regucalcin (100 nM) in elevating Ca2+‐ATPase activity was completely prevented by the presence of digitonin (10−2%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca2+‐ATPase activity was not further enhanced by calmodulin (0.30 μM) or dibutyryl cyclic AMP (10−4 M), which could increase Ca2+‐ATPase activity. Trifluoperazine (TFP; 50 μM), an antagonist of calmodulin, significantly decreased Ca2+‐ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca2+‐pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca2+‐ATPase. J. Cell. Biochem. 80:285–292, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

14.
Abstract: We have previously demonstrated that neuropeptide Y (NPY) inhibits depolarization-stimulated catecholamine synthesis in rat pheochromocytoma (PC12) cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF). The present study uses multiple selective Ca2+ channel and protein kinase agonists and antagonists to elucidate the mechanisms by which NPY modulates catecholamine synthesis as determined by in situ measurement of DOPA production in the presence of the decarboxylase inhibitor m-hydroxybenzylhydrazine (NSD-1015). The L-type Ca2+ channel blocker nifedipine inhibited the depolarization-induced stimulation of DOPA production by ~90% and attenuated the inhibitory effect of NPY. In contrast, the N-type Ca2+ channel blocker ω-conotoxin GVIA inhibited neither the stimulation of DOPA production nor the effect of NPY. Antagonism of Ca2+/calmodulin-dependent protein kinase (CaM kinase) greatly inhibited the stimulation of DOPA production by depolarization and prevented the inhibitory effect of NPY, whereas alterations in the cyclic AMP-dependent protein kinase pathway modulated DOPA production but did not prevent the effect of NPY. Stimulation of Ca2+/phospholipid-dependent protein kinase (PKC) with phorbol 12-myristate 13-acetate (PMA) did not affect the basal rate of DOPA production in NGF-differentiated PC12 cells but did produce a concentration-dependent inhibition of depolarization-stimulated DOPA production. In addition, NPY did not produce further inhibition of DOPA production in the presence of PMA, and the inhibition by both PMA and NPY was attenuated by the specific PKC inhibitor chelerythrine. These results indicate that NPY inhibits Ca2+ influx through L-type voltage-gated Ca2+ channels, possibly through a PKC-mediated pathway, resulting in attenuation of the activation of CaM kinase and inhibition of depolarization-stimulated catecholamine synthesis.  相似文献   

15.
Using laser scanning confocal microscopy, our objective was to measure mitochondrial, nuclear, and cytosolic free ionized Ca2+ in adult rabbit cardiac myocytes loaded with Ca2+-indicating fluorophores. When myocytes were loaded with Fluo 3 at 37°C, the fluorophore was loaded extensively into the cytosol and nucleus, but poorly into mitochondria, and Fluo 3 fluorescence transients after field stimulation were confined to the cytosol and nucleus. In contrast, after loading at 4°C, Fluo 3 also entered mitochondria, and large transients of mitochondrial Fluo 3 fluorescence then occurred after stimulation. Isoproterenol (1 M) increased the magnitude of Ca2+ transients and their subsequent rate of decay, an effect more marked in the cytosol and nucleus than in mitochondria. As pacing frequency was increased from 0.5 to 2 Hz, diastolic mitochondrial Ca2+ rose markedly in the absence but not in the presence of isoproterenol. Resting Ca2+ estimated by Indo 1 ratio imaging using UV/visible laser scanning confocal microscopy was about 200 nM in all compartments. During field stimulation, Ca2+ transiently increased to 671, 522, and 487 nM in cytosol, interfibrillar mitochondria, and perinuclear mitochondria, respectively. Isoproterenol increased these respective peak values to 1280, 750, and 573 nM. These results were consistent with those obtained in Fluo 3 experiments. We conclude that rapid mitochondrial Ca2+ transients occur during excitation–contraction coupling in adult rabbit cardiac myocytes, which may be important in matching mitochondrial metabolism to myocardial ATP demand during changes in cardiac output.  相似文献   

16.
Activation of protein kinase C has been shown to reduce the Ca2+ responses of a variety of cell types. In most cases, the reduction is due to inhibition of Ca2+ influx, but acceleration of Ca2+ efflux and inhibition of Ca2+ store depletion by protein kinase C activation have also been described. For adherent RBL-2H3 mucosal mast cells, results from whole-cell patch clamp experiments suggest that protein kinase C activation reduces Ca2+ influx, while experiments with intact, fura-2-loaded cells suggest that Ca2+ influx is not affected. Here we present single-cell data from Ca2+ imaging experiments with adherent RBL-2H3 cells, showing that antigen-stimulated Ca2+ responses of phorbol 12-myristate 13-acetate (PMA)-treated cells are more transient than those of control cells. PMA also reduced the response to antigen in the absence of extracellular Ca2+, indicating that depletion of intracellular Ca2+ stores is inhibited. If PMA was added after stores had been depleted by thapsigargin, a small decrease in [Ca2+]i was observed, consistent with a slight inhibition of Ca2+ influx. However, the major effect of PMA on the antigen-stimulated Ca2+ response is to inhibit depletion of intracellular Ca2+ stores. We also show that inhibition of protein kinase C did not enhance the Ca2+ response to antigen, suggesting that inhibition of the Ca2+ response by activation of protein kinase C does not contribute to the physiological response to antigen. J. Cell. Physiol. 181:113–123, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

17.
In the present study, we investigate the effect of curcumin, a major active component isolated from rhizomes of Curcuma longa, on the cytotoxicity of three human carcinoma cell lines (AGS, HT-29 and MGC803) in gastrointestinal tract and a normal gastric epithelial cell line GES-1, and the mechanism of curcumin-induced apoptosis. The results indicated that curcumin inhibited the gastrointestinal carcinoma cell growth in a dose-dependent manner and cytotoxicity was more towards the gastric carcinoma cell AGS and colon carcinoma cell HT-29 compared to normal gastric cell GES-1, and increased externalization of phosphatidylserine residue was observed by Annexin V/PI staining in the two cell lines. Treatment of AGS and HT-29 cells with curcumin enhanced the cleavage of procaspase-3, -7, -8 and -9. Meanwhile, curcumin induced endoplasmic reticulum (ER) stress and mitochondrial dysfunction as evidenced by up-regulation of CCAAT/enhancer binding protein homologous protein (CHOP), phosphorylation of JNK and down-regulation of SERCA2ATPase, release of cytochrome c, decrease of Bcl-2 and reduction of mitochondrial membrane potential in both AGS and HT-29 cells. Overexpression of bax, total JNK, phospho-FADD and total FADD were also observed in curcumin-treated HT-29 cells. Moreover, curcumin decreased cytosolic and ER Ca2+, but increased mitochondrial Ca2+ in the two cell lines. 2-Aminoethoxydiphenyl borate, an antagonist of inositol 1, 4, 5-triphosphate receptor, partly blocked curcumin-induced cytosolic Ca2+ decrease in AGS and HT-29 cells. Additionally, carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+ uptake, reversed curcumin-triggered AGS and HT-29 cells growth inhibition. siRNA to CHOP markedly reduced curcumin-induced apoptosis. These results suggest that curcumin can impact on ER stress and mitochondria functional pathways in AGS and HT-29 cells, death receptor pathway was also involved in curcumin-treated HT-29 cells, thus identifying specific well-defined molecular mechanisms that may be targeted by therapeutic strategies.  相似文献   

18.
Human fibrosarcoma cells, HT-1080, feature extensive adherens junctions, lack mature desmosomes, and express a single known desmosomal protein, Desmoglein 2 (Dsg2). Transfection of these cells with bovine Desmocollin 1a (Dsc1a) caused dramatic changes in the subcellular distribution of endogenous Dsg2. Both cadherins clustered in the areas of the adherens junctions, whereas only a minor portion of Dsg2 was seen in these areas in the parental cells. Deletion mapping showed that intact extracellular cadherin-like repeats of Dsc1a (Arg1-Thr170) are required for the translocation of Dsg2. Deletion of the intracellular C-domain that mediates the interaction of Dsc1a with plakoglobin, or the CSI region that is involved in the binding to desmoplakin, had no effect. Coimmunoprecipitation experiments of cell lysates stably expressing Dsc1a with anti-Dsc or -Dsg antibodies demonstrate that the desmosomal cadherins, Dsg2 and Dsc1a, are involved in a direct Ca2+-dependent interaction. This conclusion was further supported by the results of solid phase binding experiments. These showed that the Dsc1a fragment containing cadherin-like repeats 1 and 2 binds directly to the extracellular portion of Dsg in a Ca2+-dependent manner. The contribution of the Dsg/ Dsc interaction to cell–cell adhesion was tested by coculturing HT-1080 cells expressing Dsc1a with HT-1080 cells lacking Dsc but expressing myc-tagged plakoglobin (MPg). In the latter cells, MPg and the endogenous Dsg form stable complexes. The observed specific coimmunoprecipitation of MPg by anti-Dsc antibodies in coculture indicates that an intercellular interaction between Dsc1 and Dsg is involved in cell–cell adhesion.  相似文献   

19.
Relevant Ca2+ pools and fluxes in H9c2 cells have been studied using fluorescent indicators and Ca2+-mobilizing agents. Vasopressin produced a cytoplasmic Ca2+ peak with half-maximal effective concentration of 6 nM, whereas thapsigargin-induced Ca2+ increase showed half-maximal effect at 3 nM. Depolarization of the mitochondrial inner membrane by protonophore was also associated with an increase in cytoplasmic Ca2+. Ionomycin induced a small and sustained depolarization, while thapsigargin had a small but transient effect. The thapsigargin-sensitive Ca2+ pool was also sensitive to ionomycin, whereas the protonophore-sensitive Ca2+ pool was not. The vasopressin-induced cytoplasmic Ca2+ signal, which caused a reversible discharge of the sarco-endoplasmic reticulum Ca2+ pool, was sensed as a mitochondrial Ca2+ peak but was unaffected by the permeability transition pore inhibitor cyclosporin A. The mitochondrial Ca2+ peak was affected by cyclosporin A when the Ca2+ signal was induced by irreversible discharge of the intracellular Ca2+ pool, i.e., adding thapsigargin. These observations indicate that the mitochondria interpret the cytoplasmic Ca2+ signals generated in the reticular store.  相似文献   

20.
The involvement of the early signaling messengers, inositol tris-phosphate (IP3), intracellular calcium, [Ca2+]i, and protein kinase C (PKC), in angiotensin II (AII)-induced fluid phase endocytosis was investigated in human brain capillary and microvascular endothelial cells (HCEC). AII (0.01–10 μM) stimulated the uptake of Lucifer yellow CH, an inert dye used as a marker for fluid phase endocytosis, in HCEC by 50–230%. AII also triggered a fast accumulation of IP3 and a rapid increase in [Ca2+]i in cells loaded with the Ca2+-responsive fluorescent dye fura-2. The prompt AII-induced [Ca2+]i spike was not affected by incubating HCEC in Ca2+-free medium containing 2 mM EGTA or by pretreating the cultures with the Ca2+ channel blockers, methoxyverapamil (D600; 50 μM), nickel (1 mM), or lanthanum (1 mM), suggesting that the activation of AII receptors on HCEC triggers the release of Ca2+ from intracellular stores. The AII-triggered increases in IP3, [Ca2+]i, and Lucifer yellow uptake were inhibited by the nonselective AII receptor antagonist, Sar1, Val5, Ala8-AII (SVA-AII), and by the phospholipase C (PLC) inhibitors, neomycin and U-73122. By contrast, the protein kinase C (PKC) inhibitors, staurosporine and calphostin C, failed to affect any of these AII-induced events. This study demonstrates that increased fluid phase endocytotosis induced by AII in human brain capillary endothelium, an event thought to be linked to the observed increases in blood-brain barrier permeability in acute hypertension, is likely dependent on PLC-mediated changes in [Ca2+]i and independent of PKC. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号