首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a method for in situ hybridization of adult bone tissue utilizing undecalcified sections and have used it to histologically examine the mRNA expression of non-collagenous bone matrix proteins such as osteocalcin (bone Gla protein, BGP), matrix Gla protein (MGP), and osteopontin in adult rats. Expression was compared with that in bone tissues of newborn rats. In the adult bone tissue, osteocalcin mRNA was strongly expressed in periosteal and endosteal cuboidal osteoblasts but not in primary spongiosa near the growth plate. Osteopontin mRNA was strongly expressed in cells present on the bone resorption surface, osteocytes, and hypertrophic chondrocytes, but not in cuboidal osteoblasts on the formation surface. Osteopontin and osteocalcin mRNAs were expressed independently and the distribution of cells expressing osteopontin mRNA corresponded with acid phosphatase-positive mononuclear cells and osteoclasts. Expression of MGP mRNA was noted only in hypertrophic chondrocytes. In newborn rat bone tissues, expression of osteocalcin mRNA was much weaker than in adult rat bone tissues. These results clearly indicate the differential expression of mRNAs of non-collagenous bone matrix proteins in adult rat bone tissues.  相似文献   

2.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

3.
4.
5.
The present study focused on the hypertrophic cell zone and the adjacent region of primary spongiosa in the mandibular condylar cartilage in growing rats (3 to 7 weeks old). In this cartilage, chondrocytes were not arranged in columns, and there was no clear distinction between longitudinal and transverse septum. The hypertrophic chondrocytes were not surrounded entirely by calcified matrix, and capillaries were in close contact with cartilage cells. The staining intensity of the pericellular matrix decreased in the lower hypertrophic cell zone in comparison with that in the upper part of the hypertrophic cell zone. Electron microscopic examinations indicated that the lowest hypertrophic cells contained lysosomes and pinocytotic vesicles. Some hypertrophic chondrocytes appeared to have been released from their lacunae and were observed in the region of the primary spongiosa. Hence it is suggested that the lowest hypertrophic chondrocytes in the rat mandibular condyle do not die but are released from their lacunae into the bone marrow. Further study is needed to determine whether or not these cells do indeed become osteoblasts and/or chondroclasts.  相似文献   

6.
Avascular cartilage is replaced by highly vascularized bone tissue during endochondral ossification, a process involving capillary invasion of calcified hypertrophic cartilage in association with apoptosis of hypertrophic chondrocytes, degradation of cartilage matrix and deposition of bone matrix. All of these events are closely controlled, especially by cytokines and growth factors. Leukaemia inhibitory factor (LIF), a member of the gp130 cytokine family, is involved in osteoarticular tissue metabolism and might participate in osteogenesis. Immunohistochemical staining showed that LIF is expressed in hypertrophic chondrocytes and vascular sprouts of cartilage and bone during rat and human osteogenesis. LIF is also present in osteoblasts but not in osteoclasts. Observations in a rat endochondral ossification model were confirmed by studies of human cartilage biopsies from foetuses with osteogenesis imperfecta. LIF was never detected in adult articular chondrocytes and bone-marrow mesenchymal cells. These results and other data in the literature suggest that LIF is involved in the delicate balance between the rate of formation of calcified cartilage and its vascularization for bone development.  相似文献   

7.
In this study we examine the extracellular role of galectin-3 (gal-3) in joint tissues. Following intra-articular injection of gal-3 or vehicle in knee joints of mice, histological evaluation of articular cartilage and subchondral bone was performed. Further studies were then performed using human osteoarthritic (OA) chondrocytes and subchondral bone osteoblasts, in which the effect of gal-3 (0 to 10 μg/ml) was analyzed. Osteoblasts were incubated in the presence of vitamin D3 (50 nM), which is an inducer of osteocalcin, encoded by an osteoblast terminal differentiation gene. Genes of interest mainly expressed in either chondrocytes or osteoblasts were analyzed with real-time RT-PCR and enzyme immunoassays. Signalling pathways regulating osteocalcin were analyzed in the presence of gal-3. Intra-articular injection of gal-3 induced knee swelling and lesions in both cartilage and subchondral bone. On human OA chondrocytes, gal-3 at 1 μg/ml stimulated ADAMTS-5 expression in chondrocytes and, at higher concentrations (5 and 10 μg/ml), matrix metalloproteinase-3 expression. Experiments performed with osteoblasts showed a weak but bipolar effect on alkaline phosphatase expression: stimulation at 1 μg/ml or inhibition at 10 μg/ml. In the absence of vitamin D3, type I collagen alpha 1 chain expression was inhibited by 10 μg/ml of gal-3. The vitamin D3induced osteocalcin was strongly inhibited in a dose-dependent manner in the presence of gal-3, at both the mRNA and protein levels. This inhibition was mainly mediated by phosphatidylinositol-3-kinase. These findings indicate that high levels of extracellular gal-3, which could be encountered locally during the inflammatory process, have deleterious effects in both cartilage and subchondral bone tissues.  相似文献   

8.
Primary cultures of calvarial derived normal diploid osteoblasts undergo a developmental expression of genes reflecting growth, extracellular matrix maturation, and mineralization during development of multilayered nodules having a bone tissue-like organization. Scanning electron microscopy of the developing cultures indicates the transition from the uniform distribution of cuboidal osteoblasts to multilayered nodules of smaller cells with a pronounced orientation of perinodular cells towards the apex of the nodule. Ultrastructural analysis of the nodule by transmission electron microscopy indicates that the deposition of mineral is confined to the extracellular matrix where cells appear more osteocytic. The cell body contains rough endoplasmic reticulum and golgi, while these intracellular organelles are not present in the developing cellular processes. To understand the regulation of temporally expressed genes requires an understanding of which genes are selectively expressed on a single cell basis as the bone tissue-like organization develops. In situ hybridization analysis using 35S labelled histone gene probes, together with 3H-thymidine labelling and autoradiography, indicate that greater than 98% of the pre-confluent osteoblasts are proliferating. By two weeks, both the foci of multilayered cells and internodular cell regions have down-regulated cell growth associated genes. Post-proliferatively, but not earlier, initial expression of both osteocalcin and osteopontin are restricted to the multilayered nodules where all cells exhibit expression. While total mRNA levels for osteopontin and osteocalcin are coordinately upregulated with an increase in mineral deposition, in situ hybridization has revealed that expression of osteocalcin and osteopontin occurs predominantly in cells associated with the developing nodules. In contrast, proliferating rat osteosarcoma cells (ROS 17/2.8) concomitantly express histone H4, along with osteopontin and osteocalcin. These in situ analyses of gene expression during osteoblast growth and differentiation at the single cell level establish that a population of proliferating calvarial-derived cells subsequently expresses osteopontin and osteocalcin in cells developing into multilayered nodules with a tissue-like organization.  相似文献   

9.
This study identifies a cis-acting element that confers tissue-restricted expression to the bone sialoprotein (BSP) gene. Using both gain of function and loss-of function studies, we demonstrate that this element acts as a tissue specific enhancer of BSP expression in osteoblasts and hypertrophic chondrocytes but does not function in non-hypertrophic chondrocytes or fibroblasts. Furthermore, our data demonstrate that binding of this element occurs in correlation with active BSP expression. While Dlx5 has been implicated as the tissue-specific regulator of BSP expression through direct DNA binding at an element with homology to the one under study here, our results demonstrate that Dlx5 does not act as a positive regulator of BSP expression. Finally, mutational analyses of this element demonstrate that while there is homology to putative homeodomain binding elements, this site is unlikely to bind homeodomain factors including Dlx5. Thus, these studies identify an important cis-acting element in the BSP promoter that acts as a tissue-specific enhancer of BSP expression in both osteoblasts and hypertrophic chondrocytes. As such this is the first demonstration of a common regulatory mechanism utilized by both chondrocytes and osteoblasts for the tissue-restricted expression of the BSP gene.  相似文献   

10.
11.
In the end stage of intervertebral disc degeneration, cartilage, bone, endothelial cells, and neurons appear in association with the worsening condition. The origin of the abnormal cells is not clear. This study investigated the properties of progenitor cells in the annulus fibrosus (AF) using one in vitro and two in vivo models. Cultivation of rabbit AF cells with chondrogenic media significantly increased expressions of collagen and aggrecan. Upon exposure to osteogenic conditions, the cultures showed increased mineralization and expression of osteopontin, runx2, and bmp2 genes. Two models were used in the in vivo subcutaneous implantation experiments: 1) rabbit AF tissue in a demineralized bone matrix (DBM) cylinder (DBM/AF), and, 2) rat intact and needle punctured lumbar discs. Bone formation in the AF tissue was detected and hypertrophic chondrocytes and osteoblasts were present 1 month after implantation of the DBM/AF to nude mice. In addition to collagen I and II, immunostaining shows collagen X and osteocalcin expression in DBM/AF specimens 4 months after implantation. Similar changes were detected in the injured discs. Almost the entire needle punctured disc had ossified at 6 months. The results suggest that AF cells have characteristics of progenitor cells and, under appropriate stimuli, are capable of differentiating into chondrocytes and osteoblasts in vitro as well as in vivo. Importantly, these cells may be a target for biological treatment of disc degeneration.  相似文献   

12.
We investigated the effects of bone morphogenetic protein (BMP)-2, a member of the transforming growth factor-beta superfamily, on the regulation of the chondrocyte phenotype, and we identified signaling molecules involved in this regulation. BMP-2 triggers three concomitant responses in mouse primary chondrocytes and chondrocytic MC615 cells. First, BMP-2 stimulates expression or synthesis of type II collagen. Second, BMP-2 induces expression of molecular markers characteristic of pre- and hypertrophic chondrocytes, such as Indian hedgehog, parathyroid hormone/parathyroid hormone-related peptide receptor, type X collagen, and alkaline phosphatase. Third, BMP-2 induces osteocalcin expression, a specific trait of osteoblasts. Constitutively active forms of transforming growth factor-beta family type I receptors and Smad proteins were overexpressed to address their role in this process. Activin receptor-like kinase (ALK)-1, ALK-2, ALK-3, and ALK-6 were able to reproduce the hypertrophic maturation of chondrocytes induced by BMP-2. In addition, ALK-2 mimicked further the osteoblastic differentiation of chondrocytes induced by BMP-2. In the presence of BMP-2, Smad1, Smad5, and Smad8 potentiated the hypertrophic maturation of chondrocytes, but failed to induce osteocalcin expression. Smad6 and Smad7 impaired chondrocytic expression and osteoblastic differentiation induced by BMP-2. Thus, our results indicate that Smad-mediated pathways are essential for the regulation of the different steps of chondrocyte and osteoblast differentiation and suggest that additional Smad-independent pathways might be activated by ALK-2.  相似文献   

13.
To determine whether a system of ectopic bone formation induced by osteosarcoma-derived bone-inducing substance (bone morphogenetic protein-4) can be used as a model of developing bone at the molecular level, we studied the expression of bone-related protein mRNAs in the process of ectopic bone formation using non-radioisotopic in situ hybridization. Osteonectin mRNA was detected in fibroblast-like cells, which are similar to periosteal cells from the early to middle stages of bone development. The proportion of osteonectin mRNA-expressing cells was greater than that of osteopontin mRNA-expressing cells in hypertrophic chondrocytes and osteoblast-like cells. In contrast, osteopontin mRNA was localized in a limited population of hypertrophic chondrocytes, a single layer of osteoblast-like cells adjacent to the bone trabeculae in the middle stage of bone formation, and in a limited subset of osteocytes in the late stage. A strong osteocalcin mRNA signal was detected in osteoblast-like cells from the middle to late stages and in a limited subset of osteocytes in the late stage of bone development. Since the sequential gene expression pattern of bone-related proteins in the present system is comparable to that in embryonic osteogenesis, this system may be useful as a model for studying gene expression in osteogenesis.  相似文献   

14.
 The protooncogene protein, Bcl-2, protects cells from apoptosis and ensures their survival in vitro by inhibiting the action of the apoptosis-inducer, Bax. Its expression in proliferative and long-lived cells in vivo also indicates that it protects against cell death. The chondrocytes of the epiphyseal plate cartilage undergo a series of maturation steps and deposit mineral in the cartilage matrix before dying. The possibility that Bcl-2 helps protect chondrocytes until mineral deposition is completed was investigated by determining the distribution of Bcl-2 immunoreactivity in the epiphyseal plate cartilage of growing rats and its subcellular localization, using a specific antibody. The involvement of Bax in the triggering of chondrocyte death was checked by immunocytochemistry. Bcl-2 expression in the osteoblasts and the final result of their evolution, the osteocytes, was also examined in trabecular bone. Bcl-2 immunoreactivity was non-uniformly distributed throughout the epiphyseal cartilage. It was maximal in proliferative chondrocytes, decreased in mature chondrocytes, and low in hypertrophic chondrocytes, whereas there was Bax immunoreactivity in all chondrocytes examined. Immunolabeling was intense in osteoblasts but considerably lower in fully differentiated osteocytes. Bcl-2 immunoreactivity was mainly in the cytoplasm of chondrocytes, osteoblasts, and early osteocytes; the nuclei appeared clear. The subcellular distribution of Bcl-2 immunolabeling in chondrocytes, revealed by gold particles in the electron microscope, showed that gold particles were frequently concentrated in the mitochondria in all the cartilage zones and lay mainly within the organelles, not at their periphery. The endoplasmic reticulum contained moderate immunoreactivity and there were few gold particles in the cytoplasm and nuclei. The number of gold particles decreased in all the subcellular compartments from proliferative to hypertrophic chondrocytes. In contrast, Bax immunoreactivity changed little during chondrocyte terminal evolution, and its subcellular distribution mirrored that of Bcl-2. These immunocytochemical data indicate that Bcl-2 helps maintain chondrocytes and osteoblasts until their terminal maturation. Accepted: 19 February 1997  相似文献   

15.
16.
We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype.  相似文献   

17.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号