首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fractions and chloroform-methanol (C-M) extracts ofjimpy (jp) and normal CNS at 17–20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (PLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109–128 of normal PLP. Proteins in the immunoreactive bands 26 Mr comigrating with PLP were sequenced for the first 10–12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17–20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands 26 Mr in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).Abbreviations used Ab antibody - CM conditioned medium - C M chloroform-methanol - DCCD dicyclohexylcarbodiimide - jp jimpy - Mr mobility (apparent m.w×10–3) - PLP proteolipid protein - PVDF polyvinylidene difluoride  相似文献   

2.
Jimpy is one of many related mutations affecting the myelin proteolipid protein gene that causes severe hypomyelination in the central nervous system (CNS). Underlying the hypomyelination is a failure of oligodendrocytes (OLs) to differentiate, and the premature death of large numbers of OLs during the developmental period. Previous light and electron microscopic evidence suggested that jimpy OLs die in a manner consistent with programmed cell death. We have used TUNEL staining as a biochemical marker for apoptosis in conjunction with immunostaining for OL and myelin markers. At 13 - 14 days postnatal, a time when the number of dying OLs in jimpy CNS is increased more than five times normal, there are only modest increases (70% in spinal cord; 20% in cerebral cortex) in TUNEL labeled cells in mutant CNS tissues. The results in vitro are similar, and only a small per cent of TUNEL labeled cells have the antigenic phenotype of OLs. The discrepancy between numbers of dying and TUNEL labeled cells suggests either that most jimpy OLs do not undergo programmed cell death or that the biochemical pathways leading to their death do not involve DNA fragmentation which is detected by the TUNEL method. We also present evidence that jimpy OLs show increased survival and enhanced differentiation when they are grown in vitro in medium conditioned by cells lines which express products of the proteolipid protein gene. Cell lines expressing proteolipid protein and the alternatively spliced DM20 protein have differential effects on cell numbers and production of myelin-like membranes.  相似文献   

3.
Myelin is a special multilamellar structure involved in various functions in the nervous system. In the central nervous system, the oligodendrocyte (OL) produces myelin and has a unique morphology. OLs have a dynamic membrane sorting system associated with cytoskeletal organization, which aids in the production of myelin. Recently, it was reported that the assembly and disassembly of actin filaments is crucial for myelination. However, the partner myosin molecule which associates with actin filaments during the myelination process has not yet been identified. One candidate myosin is unconventional myosin ID (Myo1d) which is distributed throughout central nervous system myelin; however, its function is still unclear. We report here that Myo1d is expressed during later stages of OL differentiation, together with myelin proteolipid protein (PLP). In addition, Myo1d is distributed at the leading edge of the myelin-like membrane in cultured OL, colocalizing mainly with actin filaments, 2′,3′-cyclic nucleotide phosphodiesterase and partially with PLP. Myo1d-knockdown with specific siRNA induces significant morphological changes such as the retraction of processes and degeneration of myelin-like membrane, and finally apoptosis. Furthermore, loss of Myo1d by siRNA results in the impairment of intracellular PLP transport. Together, these results suggest that Myo1d may contribute to membrane dynamics either in wrapping or transporting of myelin membrane proteins during formation and maintenance of myelin.  相似文献   

4.
5.
Effects of Rumpshaker Mutation on CNS Myelin Composition and Structure   总被引:1,自引:0,他引:1  
Abstract: Myelinated CNS tissues from homozygous/hemizygous and heterozygous jimpy rumpshaker jp rsh mutant mice were examined to determine the consequences on myelin structure of this mutation in the proteolipid protein (PLP) gene. Polyacrylamide gel electrophoresis and immunoblotting of brain homogenates confirmed that there was a decrease in PLP levels on the B6C3 genetic background onto which this gene was bred. We also observed an increase in level of a protein band that could correspond to the uncharacterized 10-kDa PLP previously reported in jp rsh mice on an Rb(1.3) 1Bnr background. High-performance TLC and densitometry of lipids from brain homogenate and isolated myelin revealed a decrease in content of cerebrosides and sulfatides. Electron microscopy on optic nerves revealed that normal radial component is retained in jp rsh myelin, further substantiating that PLP is not a component of this junctional complex. X-raydiffraction measurements on unfixed optic nerves showed that the jp rsh period is 5–10 Å larger than normal. Moreover, jp rsh optic nerve myelin was unstable, as evidenced by a continual increase in the period postdissection. jp rsh myelin that was equilibrated at varying pH and ionic strength typically had a larger than normal period under all conditions (both swelling and compacting). Our findings thus demonstrate that the biochemical abnormalities in the jp rsh mutant correlate with a wider periodicity and less stable packing of the myelin.  相似文献   

6.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

7.
The authors present a brief historical sketch of the development of our understanding of immune responses to myelin proteolipid protein (PLP) and the acceptance of PLP as a potent antigen in the induction of experimental allergic encephalomyelitis (EAE). The distinct characteristics of the PLP molecule that may contribute to complex immune responses to this protein are reviewed and these responses are compared with those to MBP, both in the pathology of EAE and at the level of the T cell. Recent evidence demonstrating differences between T cell responses to PLP and MBP is reviewed. Finally, the potential contribution of immune responses to PLP in human diseases, particularly mutiple sclerosis (MS), that have been identified to date are then summarized.For the authors to write a review on PLP and its role in EAE without Marjorie is like their sailing a ship without a captain, compass or rudder. This review is largely based on work and ideas generated in Marjorie's laboratory, but it was prepared without her input. Consequently, it lacks her meticulous reflection on the structure of each of its sentences and on the use of each word. Papers written with Marjorie are usually honed to near perfection late into the evening at her kitchen table in Newton, where food, ideas, and warmth abound, and where her very patient and accommodating husband Sidney and a demanding but lovable canine are close at hand. Writing this essay gave the authors a chance to recognize our scientific forebears, to consider where we are at this point and to contemplate our future directions in studying immune responses to PLP. We are, indeed, very grateful and indebted to Marjorie for her generous personal and scientific support, wise guidance, inspiration, strength, energy and, most importantly, friendship. Marjorie, we thank you, you are our role model, and we affectionately anticipate many more years of continued collaboration with you.Abbreviations used in this paper CNS central nervous system - EAE experimental allergic encephalomyelitis - MBP myelin basic protein - MHC major histocompatibility complex - MOG myelin oligodendrocyte cyte glycoprotein - MS multiple sclerosis - PLP myelin proteolipid protein - PNS peripheral nervous system - TcR T cell receptor Special issue dedicated to Dr. Marjorie B. Lees.  相似文献   

8.
In submammalian animals including chicks, the retina contains oligodendrocytes (OLs), and axons in the optic fiber layer are wrapped with compact myelin within the retina; however, the expression of myelin genes in the chick retina has not been demonstrated yet. In the present study, we examined the expression of three myelin genes (proteolipid protein, PLP; myelin basic protein, MBP; cyclic nucleotide phosphodiesterase, CNP) and PLP in the developing chick retina, in comparison to the localization of Mueller cells. In situ hybridization demonstrated that all three myelin genes began to be expressed at E14 in the chick embryo retina. They are mostly restricted to the ganglion cell layer and the optic fiber layer, with a few exceptions in the inner nuclear layer where Mueller cells reside; however, PLP mRNA+ cells do not express glutamine synthetase, or vice versa. The present results elucidate that myelin genes are expressed only by OLs that are mostly localized in the innermost layer of the developing chick retina.  相似文献   

9.
10.
The quaking viable (qkv) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qkv mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identify the actin-interacting protein (AIP)-1 mRNA as a target of QKI-6 by using two-dimensional differential gel electrophoresis. The AIP-1 mRNA contains a consensus QKI response element within its 3′-untranslated region that, when bound by QKI-6, decreases the half-life of the AIP-1 mRNA. Although the expression of QKI-6 is known to increase during OL differentiation and CNS myelination, we show that this increase is paralleled with a corresponding decrease in AIP-1 expression in rat brains. Furthermore, qkv/qkv mice that lack QKI-6 and QKI-7 within its OLs had an increased level of AIP-1 in OLs. Moreover, primary rat OL precursors harboring an AIP-1 small interfering RNA display defects in OL process outgrowth. Our findings suggest that the QKI RNA-binding proteins regulate OL differentiation by modulating the expression of AIP-1.  相似文献   

11.
Oligodendrocytes (OLs) are mature glial cells that myelinate axons in the brain and spinal cord. As such, they are integral to functional and efficient neuronal signaling. The embryonic lineage and postnatal development of OLs have been well-studied and many features of the process have been described, including the origin, migration, proliferation, and differentiation of precursor cells. Less clear is the extent to which OLs and damaged/dysfunctional myelin are replaced following injury to the adult CNS. OLs and their precursors are very vulnerable to conditions common to CNS injury and disease sites, such as inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. Thus, these cells become dysfunctional or die in multiple pathologies, including Alzheimer's disease, spinal cord injury, Parkinson's disease, ischemia, and hypoxia. However, studies of certain conditions to date have detected spontaneous OL replacement. This review will summarize current information on adult OL progenitors, mechanisms that contribute to OL death, the consequences of their loss and the pathological conditions in which spontaneous oligodendrogenesis from endogenous precursors has been observed in the adult CNS.  相似文献   

12.
Oligodendrocytes (OLs) are the glial cells of the central nervous system (CNS) classically known to be devoted to the formation of myelin sheaths around most axons of the vertebrate brain. We have addressed the role of these cells during cerebellar development, by ablating OLs in vivo. Previous analyses had indicated that OL ablation during the first six postnatal days results into a striking cerebellar phenotype, whose major features are a strong reduction of granule neurons and aberrant Purkinje cells development. These two cell types are highly interconnected during cerebellar development through the production of molecules that help their proliferation, differentiation and maintenance. In this article, we present data showing that OL ablation has major effects on the physiology of Purkinje (PC) and granule cells (GC). In particular, OL ablation results into a reduction of sonic hedgehog (Shh), Brain Derived Neurotrophic Factor (BDNF), and Reelin (Rln) expression. These results indicate that absence of OLs profoundly alters the normal cerebellar developmental program.  相似文献   

13.
14.
Myelinating glial cells synthesize specialized myelin proteins and deposit them in the growing myelin sheath that enwraps axons multiple times. How do axons and myelinating glial cells coordinate this spectacular cell–cell interaction? In this issue, Trajkovic et al. (p. 937) show that neuronal signaling regulates cell surface expression of the myelin proteolipid protein in cultured oligodendrocytes in unexpected ways that may also contribute to myelination in situ.Myelination is a stunning example of how multiple cells cooperate to build a complex structure. Understanding how myelinating glia and neurons work together to achieve this feat is thus a challenging and important problem. Trajkovic et al. (p. 937) investigate the regulation of the trafficking of a major myelin protein, proteolipid protein (PLP), to the plasma membrane (PM) of cultured oligodendrocytes (OLs). When initially expressed in cultured OLs, PLP resides in a compartment with characteristics of a late endosome/lysosome (LE/L). Co-culture with neurons leads to an increase of PLP on the PM and a disappearance from the LE/L. This increased surface expression of PLP is due to at least two distinct mechanisms: a decrease in PLP endocytosis from the PM and an increase in exocytosis from the LE/L. The relative contributions of these two mechanisms (and possibly additional ones?) remain open questions for the future.The cells that produce myelin are highly specialized glial cells, Schwann cells in the peripheral nervous system (PNS) and OLs in the central nervous system (CNS). Myelin consists of many wrappings of glial cell membrane around the axon with little or no cytoplasm left between adjacent wraps. This compact myelin region insulates the axon from the extracellular medium and allows saltatory conduction along axons. Each successive myelin wrap creates at its lateral margins a membrane loop containing some cytoplasm. These so-called paranodal loops make up part of the noncompact myelin. Each paranodal loop forms a specialized cell junction with the axon, the axoglial apparatus. The paranodal loops, in turn, flank Nodes of Ranvier, gaps in the myelin where voltage-gated sodium channels cluster and regenerate the action potential (for review see Sherman and Brophy, 2005).Myelination is a supreme example of differential protein distribution. During myelination, glia elaborate distinct domains (such as soma and compact and noncompact myelin) with distinct lipids and protein components. At the same time, axonal membrane proteins also accumulate in distinct regions, such that the Node of Ranvier contains different proteins than the paranodal region (underlying the paranodal loops) or the juxtaparanode (flanking the paranode). Much work on who signaled whom, when, and why, revealed that neurons and myelinating glia communicate with each other bidirectionally in multiple ways to orchestrate myelination (Sherman and Brophy 2005). For instance, glial cells signal to neurons to influence axonal diameter, neurofilament spacing, and phosphorylation (Hsieh et al., 1994). Additionally, nodal, paranodal, and juxtaparanodal domains on axons form as a result of interactions with glial cells. Mutations in genes encoding paranodal proteins lead to aberrant paranodal loops and mislocalization of paranodal and juxtaparanodal components in the axon (for review see Poliak and Peles, 2003; Salzer, 2003). Somewhat surprisingly, nodal proteins still cluster in these mice, leading to the suggestion that nodal assembly might be intrinsic to axons or (in the CNS) driven by diffusible glial-derived factors (Kaplan et al., 1997). New work argues that glial cell processes which contact the node itself could direct nodal assembly. In the PNS, the node is contacted directly by microvilli of the myelinating Schwann cell. Mice lacking Schwann cell dystroglycan or laminin have aberrant microvilli and poorly clustered voltage-gated sodium channels (Saito et al., 2003; Occhi et al., 2005). Gliomedin, identified by the Peles lab, is expressed in Schwann cell microvilli and required for clustering of nodal axonal components (Eshed et al., 2005). In the CNS, Colman''s group localized the outgrowth-inhibitory molecule Omgp to distinct glial cells that can encircle nodes (Huang et al., 2005). Omgp knock-out mice show wider and disorganized nodes as well as aberrant sprouting of branches from nodes. These findings highlight the importance of node-encircling glial cells for organizing the axon.Do neurons in turn give instructions to glial cells? Oligodendrocyte precursor cells (OPCs) in the CNS migrate into developing white matter where they differentiate into postmitotic OLs and produce the myelin sheath. The differentiation of OPCs in terms of changes in gene expression and in morphology has been studied extensively in vitro and in vivo (for reviews see Pfeiffer et al., 1993; Barres and Raff, 1999). Because OPCs differentiate normally in axon-free culture and express myelin components, a role for neurons was not immediately apparent. In vivo, on the other hand, few OLs develop after transection of the optic nerve and subsequently, axons were shown to be required for survival and differentiation of OLs (Barres and Raff, 1999). OPCs and newly born OLs require astrocyte-derived factors such as PDGF, but OLs become dependent on axonal signals later. Axonal signaling to OLs occurs on at least two levels (Barres and Raff, 1999; Coman et al., 2005). Electrical activity (mediated by extrasynaptic release of adenosine [Stevens et al., 2002]) is required for proliferation of OPCs. Additionally, contact-mediated neuronal signals play important roles in OPC and Schwann cell differentiation and myelination (Corfas et al., 2004). Salzer and colleagues recently showed that the levels of neuregulin 1 type III expressed on axons determine the ensheathment fate of axons in the PNS (Taveggia et al., 2005).Compact myelin has a very specific composition of 70% lipids by dry weight (mostly composed of galactoceramide and cerebroside) with 80% of the protein mass comprised of only two proteins, myelin basic protein MBP and proteolipid protein PLP/DM20 (for review see Kramer et al., 2001). Studies have therefore focused on how OLs synthesize MBP and PLP and incorporate them into the growing myelin sheath. MBP is synthesized on free ribosomes, but its mRNA is localized to the myelin sheath (Colman et al., 1982). PLP on the other hand is a membrane-spanning protein that traverses the ER and Golgi. The role for axonal signaling for production of the myelin sheath is not well understood. For instance, OPCs in culture undergo differentiation and start to synthesize myelin components in the absence of neurons (Pfeiffer et al., 1993). Early reports from cultured rat OLs concluded that PLP was synthesized and incorporated into the PM without neurons (Hudson et al., 1989). Interestingly though, PM expression of PLP could not be detected for many days after intracellular pools of PLP were clearly detectable. The delayed PM expression of PLP raised the possibility that axonal signaling could speed up PM expression.The paper by Simons and colleagues in this issue demonstrates neuronal control of PLP trafficking (Trajkovic et al., 2006). Primary OLs, as well as two OL cell lines, contain PLP in a LE/L (as well as on the PM). This LE/L pool of PLP persists if neurons are absent from the culture. When OLs are cocultured with neurons, PLP is found with LE/L initially, but later disappears from there and increased amounts can be detected on the PM. When brain sections were costained against lysosomal markers and PLP, high colocalization of PLP with LE/L was detected in P7 mice while in P60 brains PLP did not colocalize with LE/L. Therefore, PLP localizes (at least partially) with LE/L in vivo and disappears from there upon myelination. This finding assuages much of the fear that PLP-containing LE/L are just a culture phenomenon or due to inappropriate expression levels (Kramer et al., 2001; Simons et al., 2002). The authors tested three explanations to account for their observations: increased proteolysis of PLP, decreased endocytosis, and/or increased exocytosis from LE/L. Proteolysis of PLP was found to be unaffected by neuronal coculture. Endocytosis (via a clathrin-independent, cholesterol-dependent, actin-dependent, and RhoA-dependent pathway), on the other hand, was decreased. Using PLP-GFP and lysotracker to mark LE/L in live OLs, the authors also found that the LE/L became much more mobile in the presence of neurons. To determine whether the moving LE/L in cocultured OLs can fuse with the PM and potentially deliver PLP sequestered in LE/L, the authors used total internal reflection fluorescence microscopy (TIRFM) on lysotracker-labeled OLs. Without neurons present, the LE/L was not found within 100 nm of the PM and was therefore invisible to TIRFM. When neurons were present, many LE/L were found near the PM and events suggestive of fusion could be observed at a rate of 1–2 events/min. Lastly, the authors determined that diffusible neuronal factors were sufficient to induce increased PLP surface expression. Addition of a membrane-permeable cAMP analogue to OLs in the absence of neurons led to increased PLP on the surface as well as high mobility of lysotracker pools containing PLP-GFP.These results suggest that diffusible neuronal factors (currently unknown) could activate cAMP signaling in OLs and regulate endocytosis and exocytosis of PLP. Exocytosis from LE/L is a regulated pathway in other cells as well (Blott and Griffiths, 2002). In OLs, at least some of the PLP could be stored in LE/L until neuronal promyelinating signals are received. Because many proteins arrive in the LE/L from the TGN, it would be interesting to investigate the potential neuronal regulation of PLP sorting events in the Golgi. Although we still await a complete quantitative account of what proportion of PLP is transported where and when, this paper presents an exciting advance in our understanding of the neuronal control of OL membrane traffic.  相似文献   

15.
This article reviews recent advances in understanding the role of myelin proteolipid protein (PLP) in autoimmune demyelination. It is drawn largely from work published within the last years and discusses the immunology of PLP in the historical context of what has been learned from extensive studies on the immune response to myelin basic protein (MBP). Despite the, fact that PLP is the major protein constituent of mammalian myelin, its role in autoimmune demyelination has not been widely recognized. The lack of understanding about the immunology of PLP is a direct result of the biochemical characteristics of the protein. PLP is a highly hydrophobic membrane protein with limited aqueous solubility. The hydrophobicity of PLP has thwarted, immunologic studies of the intact protein. Recent work has circumvented the technical obstacles of studying the intact protein by using soluble synthetic PLP peptides. This approach has rapidly resulted in a more definitive understanding of the immune response to PLP. Presently, the data indicate that:i) PLP is a major central nervous system (CNS) specific encephalitogen;ii) CD4+T cell reactivity to discrete PLP peptide determinants can mediate the development of acute chronic relapsing, and chronic progressive experimental autoimmune encephalomyelitis (EAE); andiii) T cell reactivity to multiple PLP determinants occurs in patients with multiple sclerosis (MS), the major human CNS demyleinating disease.Special Issue dedicated to Dr. Majorie B. Lees.  相似文献   

16.
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Recovery of Proteolipid Protein in Mice Heterozygous for the Jimpy Gene   总被引:1,自引:1,他引:0  
We have measured levels and synthesis of proteolipid protein (PLP) and its transport into myelin in female mice heterozygous for the jimpy gene and in their normal female littermates. In both cord and cerebrum, jimpy carriers show deficits in PLP during development followed by compensation in adulthood. Recovery of PLP occurs earlier in cord than in brain. At 13 days levels of PLP in carriers compared to controls are reduced to 0.60 and 0.44, respectively, in cord and cerebrum. By 100 days, normal levels of PLP are attained in cord (1.13) whereas levels of PLP in cerebrum are only 0.78 of control. By 200 days full recovery occurs in cerebrum, with a ratio of 1.21, suggesting a possible over-compensation. The yield of myelin from cerebrum was reduced to 0.78 in carriers compared to controls at 17 days. In brain slices, incorporation of [3H]leucine into homogenate PLP from carriers is the same as in controls, whereas [3H]leucine incorporation into myelin PLP is reduced to 0.68 of control. These results indicate that synthesis of PLP in the carriers is normal at 17 days, but transport of PLP into myelin is reduced. Similarly, acylation of homogenate PLP is normal, whereas acylation of myelin PLP is reduced, as measured by incorporation of [3H]palmitic acid. Transport of PLP into myelin was compared to transport of MBP; transport of both proteins was equally decreased as indicated by the similar ratio of labeled PLP to MBP in myelin from carriers compared to noncarriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific.  相似文献   

19.
This study investigates the effect of nitric oxide (NO) on both the chemical modifications of CNS proteins and the architecture of the myelinated internode. Incubation of rat optic nerves for 2 h with 1 mM concentration of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), and 4-phenyl-3-furoxan carbonitrile (PFC) led to decompaction of myelin at the level of the intraperiod line (IPL). In contrast, incubation with 1 mM sodium nitroprusside, which slowly releases NO, sodium nitrite, and N-nitrosopyrrolidine failed to cause myelin disassembly. This suggests that free NO and/or some of its direct oxidation products (e.g., N2O3) are the active molecular species. NO-induced alterations in myelin architecture could not be assigned to protein or lipid degradation, lipid peroxidation, ATP depletion, calcium uptake, protein nitration, protein carbonylation, and nerve depolarization. NO-treatment, however, resulted in the S-nitrosation of a number of proteins. In myelin, one of the major S-nitrosated substrates was identified as proteolipid protein (PLP), an abundant cysteine-rich protein that is responsible for IPL stabilization. Peripheral nervous system myelin, whose stability depends on proteins other than PLP, was not decompacted upon incubation of sciatic nerves with SNAP. It is proposed that NO-mediated nitrosation of sulfhydryl groups is likely to interfere with the normal function of PLP and other important CNS myelin proteins leading to the structural demise of this membrane. These findings are relevant to multiple sclerosis and other inflammatory demyelinating disorders where both excessive NO production and myelin instability are known to occur.  相似文献   

20.
P2 protein, a myelin-specific protein, was detected immunocytochemically and biochemically in rabbit central nervous system (CNS) myelin. P2 protein was synthesized by rabbit oligodendrocytes and was present in varying amounts throughout the rabbit CNS. Comparison of P2 and myelin basic protein (MBP) stained sections revealed that P2 antiserum did not stain all myelin sheaths within the rabbit CNS. The proportion of myelin sheaths stained by P2 antiserum and the amount of P2 detected biochemically were greater in more caudal regions of the rabbit CNS. The highest concentration of P2 protein was found in rabbit spinal cord myelin, where P2 antiserum stained the majority of myelin sheaths. P2 protein was barely detectable biochemically in myelin isolated from frontal cortex, and in sections of frontal cortex only occasional myelin sheaths reacted with P2 antiserum. These results suggest the the regional variations in the amount of P2 protein are dut to regional differences in the number of myelin sheaths that contain P2 protein. P2 protein was detected immunocytochemically and biochemically in rabbit sciatic nerve myelin. Immunocytochemically, P2 antiserum only stained a portion of the myelin sheaths present. The myelin sheaths not reacting with P2 antiserum had small diameters and represented less than 10% of the total myelinated fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号