首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the role of autocrine/paracrine TGF-β secretion in the regulation of cell growth by androgens as demonstrated by its inhibition by two androgen response modifiers; the nonsteroidal antiandrogen hydroxyflutamide (OHF), believed to act by inhibiting androgen binding to androgen receptors, or finasteride, an inhibitor of 5α-reductase, the enzyme necessary for the conversion of testosterone to 5α-dihydrotestosterone (DHT), using the nontumorigenic rat prostatic epithelial cell line NRP-152. Growth of these cells was stimulated three- to sixfold over control by either testosterone or DHT under serum-free culture conditions. This was accompanied by a two- to threefold decrease in the secretion rate of TGF-β1, -β2, and -β3. Finasteride reversed the ability of testosterone but not DHT to stimulate growth and downregulate expression of TGF-β1, -β2, and -β3 in a dose-dependent fashion, suggesting that this activity of testosterone required its conversion to DHT. OHF antagonized the stimulatory effects of DHT on NRP-152 cell growth but could reverse the inhibitory effects of DHT only on TGF-β2 and TGF-β3 and not TGF-β1 secretion. This suggests that either TGF-β1 regulation by DHT or the androgen antagonism of OHF occurs independent of androgen receptor binding. Neutralizing antibodies to TGF-β (pantropic and isoform-specific) were able to block the ability of finasteride to antagonize the effects of testosterone nearly completely while only partially inhibiting the antiandrogenic effects of OHF. Thus, the ability of androgens to stimulate growth of NRP-152 cells involves the downregulation of the production of TGF-β1, -β2, and -β3 in addition to other growth-stimulatory mechanisms. J. Cell. Physiol. 175:184–192, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    2.
    Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome‐wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage. Birth Defects Research (Part C) 102:37–51, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

    3.
    4.
    Polarized gastrointestinal epithelial cells form tight junctions that spatially separate apical and basolateral cell membrane domains. These domains harbor functionally distinct proteins that contribute to cellular homeostasis and morphogenesis. Transforming growth factor β (TGFβ) is a critical regulator of gastrointestinal epithelial cell growth and differentiation. Functional assays of vectorial TGFβ signaling and immunofluorescence techniques were used to determine the localization of TGFβ receptors and ligand secretion in polarizing Caco‐2 cells, a colon cancer cell line. Results were compared to the nontransformed MDCK cell line. In both Caco‐2 and MDCK cells, addition of TGFβ1 to the basolateral medium resulted in phosphorylation of Smad2. No phosphorylation was observed when TGFβ1 was added to the apical chamber, indicating that receptor signaling is localized at the basolateral membrane. In support of this, immunofluorescence and biotinylation assays show receptor localization along the basolateral membrane. Secretion of TGFβ1 from MDCK and Caco‐2 cells into the apical or basolateral medium was measured by ELISA. Interestingly, secretion was exclusively apical in the nontransformed MDCK line and basolateral in transformed Caco‐2 cells. Collectively, these results show basolateral domain specificity in localization of the TGFβ receptor signaling apparatus. These observations have important implications for understanding the biology of TGFβ in polarized epithelia, including elements of communication between epithelial and mesenchymal layers, and will prove useful in the design of therapeutics that target TGFβ function. J. Cell. Physiol. 224: 398–404, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

    5.
    When 3T3-L1 preadipose cells are exposed to transforming growth factor β (TGFβ), they synthesize more extracellular matrix (ECM) and resist differentiation-inducing stimuli. The mechanism by which ECM suppresses adipose cell differentiation (adipogenesis) remains unknown. Since adipogenesis is an insulin/insulin-like growth factor-1 (IGF-1)-dependent process, we investigated whether TGFβ-induced ECM inhibits insulin signaling. When preadipose cells were pretreated overnight with TGFβ, we observed a 75% decrease in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) compared to that in control cells. Culturing 3T3-L1 preadipose cells on fibronectin, a component of the ECM induced by TGFβ, also inhibited insulin-dependent IRS-1 tyrosine phosphorylation and adipogenesis, supporting a role for ECM in mediating TGFβ's inhibitory effect on insulin signaling. Since the insulin-stimulated association of phosphoinositide (PI) 3-kinase with IRS-1 depends on IRS-1 tyrosine phosphorylation, we measured the presence of the PI 3-kinase 85 kDa regulatory subunit in anti-IRS-1 immunoprecipitates. Following insulin stimulation, PI 3-kinase-IRS-1 association was reduced by 70% in TGFβ pretreated vs. control preadipose cells. However, insulin-stimulated cellular production of PI(3,4,5)P3 was unaltered by TGFβ pretreatment. This suggests that IRS-1-associated p85-type PI 3-kinase may represent a particular subset of total cellular PI 3-kinase that is specifically inhibited by TGFβ. Reduction of insulin-stimulated association of IRS-1 with p85-type PI 3-kinase by TGFβ may be one potential mechanism through which TGFβ blocks 3T3-L1 adipose cell differentiation. J. Cell. Physiol. 175:370–378, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    6.
    Stromal cells are key regulators of growth and differentiation in the adult human prostate. Alterations in the stroma are believed to initiate the development of benign prostatic hyperplasia, and stromal–epithelial interactions may have a role in malignant progression. The prostatic stroma is composed of two major cell types, smooth muscle cells and fibroblasts. Cell cultures from the prostatic stroma have been established by several investigators, but the phenotype of these cells has not been extensively characterized and it is not clear whether they are fibroblastic or smooth muscle-like. In this study, the response of stromal cells cultured from normal prostatic tissues to transforming growth factor-β (TGFβ) was investigated. We confirmed a previous report that TGFβ inhibited the growth of prostatic stromal cells in serum-containing medium, and showed that inhibition also occurred in serum-free medium. Growth inhibition by TGFβ was irreversible after 24 to 72 h of exposure. In the absence of TGFβ, cells were fibroblastic and expressed vimentin and fibronectin but little α-smooth muscle actin. After 3 days of exposure to 1 ng/ml of TGFβ, the majority of cells expressed α-smooth muscle actin and desmin, as demonstrated by immunocytochemistry and immunoblot analysis. This effect was specific and α-smooth muscle actin was not induced by two other growth-inhibitory factors, retinoic acid or 1,25-dihydroxyvitamin D3. These results suggest that TGFβ is an important regulator of growth and differentiation of prostatic stromal cells and that a smooth muscle cell phenotype is promoted in the presence of TGFβ.  相似文献   

    7.
    Ras is activated by transforming growth factor beta (TGFβ) in several cell types, but the biological consequences of this activation are largely unknown. We now show that ras mediates two stages in integrin β1-chain maturation: 1) glycosylation of the 86-kD core peptide, which is a TGFβ1-independent process, and 2) TGFβ1-mediated conversion of the 115-kD β1 integrin precursor into the mature 130-kD form. HD3 colon epithelial cells maintain elevated levels of integrin α2β1 heterodimers, strong binding to collagen I, and autocrine regulation by TGFβ1, which converts β1 integrin into the mature cell surface form. Each of three HD3 cell clones that stably express dominant negative ras (N17ras) exhibited abnormal glycosylation of the integrin β1-chain, decreased cell surface expression of the mature integrin β1, and impaired binding to collagen and laminin. Autocrine levels of TGFβ were not altered by expression of N17ras. The aberrant glycosylation of the integrin β1-chain was reversed by antisense oligonucleotides specific to the DNA sequence encoding the rasS17N mutation. Glycosylation of the 86-kD core peptide was delayed in the N17ras transfectants, but was not altered by either the addition of TGFβ1 or inhibition of autocrine TGFβ1. In contrast, conversion of the partially glycosylated β1 integrin precursor into the mature 130-kD isoform was accelerated by exogenous TGFβ1 and blocked by neutralizing antibody to autocrine TGFβ1 in control cell lines. Neither effect was seen in the N17ras transfectants, indicating that TGFβ1 modulates integrin β1-chain maturation by activating ras proteins. Cell fractionation studies demonstrated that this conversion takes place within the Golgi. J. Cell. Physiol. 181:33–44, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

    8.
    Osteoblasts secrete transforming growth factor beta (TGFβ) as a biologically inert, latent complex that must be dissociated before the growth factor can exert its effects. We have examined the production and proteolytic activation of latent TGFβ (LTGFβ) by clonal UMR 106-01 rat osteosarcoma cells and neonatal mouse calvarial (MC) osteoblast-like cells in vitro. Synthetic bPTH-(1–34) increased the activity of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PA) in cell lysates (CL) of UMR 106-01 cells. The concentration of active TGFβ in serum-free CM from cultures treated with bPTH-(1–34) and plasminogen was significantly greater than in CM from untreated controls and cultures treated with either bPTH-(1–34) or plasminogen alone. This effect occurred at concentrations of PTH-(1–34) that increased PA activity and was prevented by aprotinin, an inhibitor of plasmin activity. Treatment with bPTH-(1–34) had no effect on the concentration of TGFβ in acid-activated samples of CM. Functional consequences of proteolytically activated TGFβ was examined in primary cultures of neonatal MC osteoblast-like cells. Human platelet TGFβ1 caused a dose-dependent increase in the migration of these cells in an in vitro wound healing assay. Cell migration was also stimulated in cultures treated with bPTH-(1–34) and plasminogen together. This effect was blocked by an anti-TGFβ1 antibody. The results of these studies demonstrate that (1) LTGFβ secreted by osteoblasts in vitro is activated under conditions where the plasmin activity in the cultures is increased, and (2) the TGFβ generated by plasmin-mediated proteolysis is biologically active. We suggest that the local concentration of TGFβ in bone may be controlled by the osteoblast-associated plasminogen activator/plasmin system. Furthermore, since several calciotropic factors influence osteoblast PA activity, this system may have an important role in mediating their anabolic and/or catabolic effects. © 1993 Wiley-Liss, Inc.  相似文献   

    9.
    Primary rat tracheal epithelial (RTE) cell cultures have previously been shown to secrete transforming growth factor-β (TGFβ) and to be growth inhibited by exogenous TGFβ. The purpose of the present studies was to determine whether the endogenous TGFβ(s) were regulating the growth of RTE cell cultures and, if so, which isoforms were involved. Neutralizing antibodies specific to TGFβ1 and TGFβ2 were added to cultures, and their effects on several growth parameters were measured. Addition of antibodies to early cultures (day 1), resulted in 1.8-and 3-fold increases in colony formation and cell number, respectively, above control IgG-treated cultures. Antibody dose-response experiments revealed that TGFβ2 was the predominant isoform inhibiting early RTE cell growth. The antibody treatments resulted in similar stimulation of early growth at low and high seeding densities, suggesting that the endogenous TGFβs were acting locally. Anti-TGFβ1 treatment of cultures at various stages of growth resulted in 1.2–1.7-fold increases in DNA synthesis above controls, whereas anti-TGFβ2 treatment resulted in increased DNA synthesis only in early and late cultures (1.7- and 2.5-fold, respectively), but not during midlogarithmic growth. Continuous treatment with a combination of both antibodies resulted in increased growth and decreased exfoliation in early cultures, but had no effect on the slow down of growth in late cultures. Thus endogenous TGFβs inhibited primarily early growth and contributed to, but did not appear to be responsible for, plateau of growth in late stage cultures. Antibody treatment of secondary cultures resulted in 4–70-fold increases in colony formation, depending on the age of the primary cultures when replated, indicating that endogenous production of both TGFβ1 and TGFβ2 greatly inhibits the subculturability of primary RTE cells. Other experiments suggested that cholera toxin enhances RTE cell growth in part by counteracting the inhibitory effects of endogenous TGFβs. © 1993 Wiley-Liss, Inc.  相似文献   

    10.
    Osteoblasts produce a 100 kDa soluble form of latent transforming growth factor beta (TGF-β) as well as a 290 kDa form containing latent TGF-β binding protein-1 (LTBP1), which targets the latent complex to the matrix for storage. The nature of the soluble and stored forms of latent TGF-β in chondrocytes, however, is not known. In the present study, resting zone and growth zone chondrocytes from rat costochondral cartilage were cultured to fourth passage and then examined for the presence of mRNA coding for LTBP1 protein. In addition, the matrix and media were examined for LTBP1 protein and latent TGF-β. Northern blots, RT-PCR, and in situ hybridization showed that growth zone cells expressed higher levels of LTBP1 mRNA in vitro than resting zone cells. Immunohistochemical staining for LTBP1 revealed fine fibrillar structures around the cells and in the cell matrix. When the extracellular matrix of these cultures was digested with plasmin, LTBP1 was released, as determined by immunoprecipitation. Both active and latent TGF-β1 were found in these digests by TGF-β1 ELISA and Western blotting. Immunoprecipitation demonstrated that the cells also secrete LTBP1 which is not associated with latent TGF-β, in addition to LTBP1 that is associated with the 100 kDa latent TGF-β complex. These studies show for the first time that latent TGF-β is present in the matrix of costochondral chondrocytes and that LTBP1 is responsible for storage of this complex in the matrix. The data suggest that chondrocytes are able to regulate both the temporal and spatial activation of latent TGF-β, even at sites distant from the cell, in a relatively avascular environment. J. Cell. Physiol. 177:343–354, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    11.
    12.
    Spontaneously arising, TGFβ1-resistant colonies were isolated directly from the soft agarose plates of MOSER human colon carcinoma cells grown in the presence of TGFβ1 but in the absence of serum. The colonies were cloned by limiting dilution and screened in a monolayer proliferation assay for sensitivity to TGFβ1 and TGFβ2 isoforms. Cell clones selectively sensitive or resistant to these isoforms in the growth inhibition assay displayed similar differential sensitivities to TGFβ isoforms for production of the extracellular matrix proteins laminin and fibronectin, as well as for the expression of the colon cell differentiation marker carcinoembryonic antigen. Differential receptor binding profiles for TGFβ1 and TGFβ2 were observed among the clones. The isolation of cell clones selectively resistant or sensitive to TGFβ isoforms as well as the identification of differential receptor binding profiles among the clones indicate the heterogeneity of TGFβ responsiveness that exists naturally in human colon tumor cells and stress the importance of defining mechanisms underlying differential responsiveness to TGFβ isoforms. © 1995 Wiley-Liss Inc.  相似文献   

    13.
    14.
    Loss of sensitivity to the negative growth regulator transforming growth factor β (TGFβ) is a feature of many different tumor types and is likely involved in tumor progression. In some cases this loss of sensitivity to TGFβ has been shown to be manifest in the absence of membrane-associated TGFβ receptor complexes, thus preventing initiation of antiproliferative signals from the cell surface. In others, loss of sensitivity to TGFβ-induced inhibitory signals has been attributed to loss of function of intracellular effectors of TGFβ-induced inhibitory signals due to mutation or allelic loss of effector genes and their products. The intracellular effectors of TGFβ inhibitory signals have been shown to be involved in the normal regulation of progression through the cell cycle, specifically during G1 phase. In this manner, elucidation of the mechanisms by which TGFβ inhibits cell growth not only helps us identify steps involved in tumor progression, but also allows us to better understand how cells regulate progression through the cell cycle. J. Cell. Biochem. 66:427–432, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    15.
    We have characterized a 60-kDa transforming growth factor-β (TGF-β) binding protein that was originally identified on LNCaP adenocarcinoma prostate cells by affinity cross-linking of cell surface proteins by using 125I-TGF-β1. Binding of 125I-TGF-β1 to the 60-kDa protein was competed by an excess of unlabeled TGF-β1 but not by TGF-β2, TGF-β3, activin, or osteogenic protein-1 (OP-1), also termed bone morphogenetic protein-7 (BMP-7). In addition, no binding of 125I-TGF-β2 and 125I-TGF-β3 to the 60-kDa binding protein on LNCaP cells could be demonstrated by using affinity labeling techniques. The 60-kDa TGF-β binding protein showed no immunoreactivity with antibodies against the known type I and type II receptors for members of the TGF-β superfamily. Treatment of LNCaP cells with 0.25 M NaCl, 1 μg/ml heparin, or 10% glycerol caused a release of the 60-kDa protein from the cell surface. In addition, we found that the previously described TGF-β type IV receptor on GH3 cells, which does not form a heteromeric complex with TGF-β receptors, could be released from the cell surface by these same treatments. This suggests that the 60-kDa protein and the similarly sized TGF-β type IV receptor are related proteins. The eluted 60-kDa LNCaP protein was shown to interfere with the binding of TGF-β to the TGF-β receptors. Thus, the cell surface-associated 60-kDa TGF-β binding protein may play a role in regulating TGF-β binding to TGF-β receptors. J. Cell. Physiol. 173:447–459, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    16.
    The production of the leukemic cell-growth-promoting factor (LGF) in TGF-β1-treated fibroblast cells was studied. BALB/c3T3 mouse fibroblast(3T3) cells cultured in Eagle's medium containing a low concentration of TGF-β1 (0.04-1 ng/ml) secreted 3-5 times more LGF than the cells cultured in the absence of TGF-β1. The amount of LGF secretion was dose-dependent on the concentration of post-cultured medium and time-dependent after the addition of TGF-β1. Similar findings were obtained in human diploid fibroblasts, WI-38 cells. LGF is a 18KD glycoprotein that is acid-stable but heat-unstable.  相似文献   

    17.
    Various osteoblastic cell lines were examined for the relationship between the presence of cell-surface transforming growth factor (TGF)-β receptors and the synthesis of matrix proteins with their responsiveness to TGF-β. Treatment with TGF-β1 inhibited proliferation and stimulated proteoglycan and fibronectin synthesis in MC3T3-E1 and MG 63 cells. The major proteoglycans synthesized by these cells were decorin and biglycan, and TGF-β1 markedly stimulated the synthesis of decorin in MC3T3-E1 and of biglycan in MG 63 cells. SaOS 2 and UMR 106 cells synthesized barely detectable amounts of decorin or biglycan, and TGF-β1 did not stimulate the synthesis of these proteoglycans. In SaOS 2 cells, however, TGF-β1 enhanced fibronectin synthesis. TGF-β1 did not show any of these effects in UMR 106 cells. Receptor cross-linking studies revealed that only MC3T3-E1 and MG 63 cells had both types I and II signal-transducing receptors for TGF-β in addition to betaglycan. SaOS 2 cells possessed type I but no type II receptor on the cell surface. In contrast, SaOS 2 as well as MC3T3-E1 and MG 63 cells expressed type II receptor mRNA by Northern blot analysis, and cell lysates contained type II receptor by Western blot analysis. Thus, it appears that type II receptor present in SaOS 2 cells is not able to bind TGF-β1 under these conditions. UMR 106 cells with no response to TGF-β1 had neither of the signal-transducing receptors by any of the analyses. These observations using clonal osteoblastic cell lines demonstrate that the ability of osteoblastic cells to synthesize bone matrix proteoglycans is associated with the responsiveness of these cells to TGF-β1, that the responsiveness of osteoblastic cells to TGF-β1 in cell proliferation and proteoglycan synthesis correlates with the presence of both types I and II receptors, and that the effect of TGF-β1 on fibronectin synthesis can develop with little binding of TGF-β1 to type II receptor if type I receptor is present. It is suggested that the combination of cell-surface receptors for TGF-β determines the responsiveness of osteoblastic cells to TGF-β and that changes in cell-surface TGF-β receptors may play a role in the regulation of matrix protein synthesis and bone formation in osteoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

    18.
    We have previously characterized a human mammary epithelial cell (HMEC) culture system for the effects of TGFβ1 on cell growth. In the current report, the effects of TGFβ 1 on synthesis and secretion of proteins associated with the extracellular matrix and proteolysis were examined. In particular, we compared the TGFβ responses of normal finite lifespan HMEC, which are growth inhibited by TGFβ, to two immortally transformed cell lines derived from the normal HMEC. One of these lines maintains active growth in the presence of TGFβ and the other shows partial growth inhibition. In contrast to the differing effects of TGFβ on cell growth, we found that all these cell types showed strong induction of most of the mRNA and protein species examined, including fibronectin, collagen IV, laminin, type IV collagenase, urokinase type plasminogen activator (uPA), and plasminogen activator inhibitor 1 (PAI-1). The profile of TGFβ 1 binding proteins was the same in HMEC that were, and were not growth suppressed by TFGβ. Therefore, the effects of TGFβ on cell growth could be dissociated from its effects on specialized responses, indicating that within this one cell type there must be at least two independent pathways for TGFβ activity, one which leads to cessation of proliferation and one which induces a specific set of cellular responses. This cell system may be useful for examining the pathway of TGFβ induced growth inhibition using closely matched cells which vary in their growth-induced response but retain similar specialized responses to TGFβ. © 1993 Wiley-Liss, Inc.  相似文献   

    19.
    20.
    We investigated putative roles of transforming growth factor (TGF)-β expressed in peripheral ganglia in the regulation of neuronal cell survival during the period of ontogenetic neuron death (OD). The chick ciliary ganglion (CG), where OD occurs between embryonic days (E) 6 and 10, was employed as a model system. We show that CG neurons (E8) are immunoreactive (ir) for TGF-β2 and -β3 as well as the TGF-β receptor TβR-II, but are not ir for TGF-β1. Ciliary neurotrophic factor (CNTF) and fibroblast growth factor (FGF)-2, established neurotrophic molecules for CG neurons, up-regulate TGF-β3 mRNA and TGF-β biological activity in cultures of E8 CG neurons. None of the TGF-β isoforms—β1, β2, or β3—has a trophic, survival-promoting effect on cultured CG neurons. However, all isoforms enhance CG neuron survival mediated by CNTF or FGF-2, significantly and over a wide range of concentrations. In combination with the neurotrophins (NT) nerve growth factor (NGF) and NT-3, which are not neurotrophic for CG neurons, TGF-β significantly promotes CG neuron survival. However, TGF-β does not act synergistically with the neuropoietic cytokines oncostatin M, leukemia inhibiting factor, or interleukin-6. Immunoneutralization of endogenous TGF-β released from CG neurons using an antibody to TGF-β1/-β2/-β3 significantly reduces the potency of CNTF or FGF-2 to promote CG neuron survival. The blocking effect of the anti–pan-TGF-β antibody could be rescued by adding exogenous TGF-β. Together, these data suggest that para-/autocrine TGF-β signaling has an important effect on the regulation of neuron survival in a model system of peripheral neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 563–572, 1998  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号