首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multinucleated osteoclasts from rabbit long bone, 1–6 days in culture, respond to mechanical perturbation with a transient increase of intracellular calcium concentration ([Ca2+]i), as measured with the fluorescent indicator fluo-3 on a confocal laser scanning microscope. In experiments with different extracellular calcium concentrations (from 11.8 mM to calcium-free), the incidence, the magnitude, and the duration of [Ca2+]i responses decreases with decreasing bathing [Ca2+]. Following mechanical perturbation, a thapsigargin-induced [Ca2+]i response has a lower magnitude than the thapsigargin-induced response without mechanical perturbation. In thapsigargin-pretreated osteoclasts the mechanical perturbation-induced rise in [Ca2+]i is larger and longer than in control cells. Ni2+ inhibits the incidence and decreases both the magnitude and the duration of the responses, while nifedipine, verapamil, and Gd3+ have no effect. These measurements show that rabbit osteoclasts transduce a mechanical perturbation of the cell membrane into a [Ca2+]i signal via both a calcium influx and an internal calcium release. © 1995 Wiley-Liss, Inc.  相似文献   

2.
An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca 2+]i). This study analyzed the [Ca 2+]i wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca 2+]i wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca 2+]i wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca 2+]i wave area in the first bout it was likely to have a large [Ca 2+]i wave area in the second bout (r 2 = 0.933). These findings support the idea that individual bone cells have “calcium fingerprints” (i.e., a unique [Ca 2+]i wave profile that is reproducible for repeated exposure to a given stimulus).  相似文献   

3.
Altered cytosolic free calcium concentrations ([Ca2+]i) accompany impaired brain metabolism and may mediate subsequent effects on brain function and cell death. The current experiments examined whether hypoxia-induced elevations in [Ca2+]i are from external or internal sources. In the absence of external calcium, neither KCl depolarization, histotoxic hypoxia (KCN), nor the combination changed [Ca2+]i. However, with external CaCl2 concentrations as small as 13 M, KCl depolarization increased [Ca2+]i instantaneously while hypoxia gradually raised [Ca2+]i. The combination of KCN and KCl was additive. Increasing external calcium concentrations up to 2.6 mM exaggerated the effects of K+ and KCN on [Ca2+]i, but raising medium calcium to 5.2 mM did not further augment the rise. Diminishing the sodium in the media, which alters the activity and perhaps the direction of the Na/Ca exchanger, reduced the increase in [Ca2+]i due to hypoxia, but enhanced the KCl response. The changes in ATP following K+ depolarization, KCN or their combination in the presence of physiological calcium concentrations did not parallel alterations in [Ca2+]i, which suggests that diminished activity of the calcium dependent ATPase does not underlie the elevation in [Ca2+]i. Valinomycin, an ionophore which reduces the mitochondrial membrane potential, elevated [Ca2+]i and the effects were additive with K+ depolariration in a calcium dependent manner that paralleled the effects of hypoxia. Together these results suggest that hypoxia-induced elevations of synaptosomal [Ca2]i are due to an inability of the synaptosome to buffer entering calcium.  相似文献   

4.
Localized intracellular Ca2+ ([Ca2+]i) pulses, fluctuations, and repetitive spikes were detected in multinucleated rabbit osteoclasts in the presence of serum and in response to calcitonin using the fluorescent calcium indicator fluo-3 and a laser scanning microscope. We observed that these [Ca2+]i changes were often restricted within a region of the cell body or propagated from the initial region of occurrence to other parts of the cell body but not to all parts. These observations suggest the existence of significant barriers to Ca2+ transport between different cytoplasmic regions of the osteoclast. To further investigate this phenomenon, we mechanically perturbed different cellular regions by touching locally with a micropipette. This usually induced a local increase in cytosolic and nuclear free [Ca2+]i. In some cases there was propagation of the [Ca2+]i increase to other regions but with part of the cell body not affected. Those regions of the cell body to which the [Ca2+]i increase did not propagate had a [Ca2+]i response to a direct mechanical perturbation. Our data show that osteoclasts can have different [Ca2+]i activities in apparently equivalent cellular regions, no matter how generated. This suggests that there can be a number of spatially separate Ca2+ regulatory systems within an osteoclast cell body. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Most of the signaling effectors located downstream of receptor activator of NF-κB (RANK) activation are calcium-sensitive. However, the early signaling events that lead to the mobilization of intracellular calcium in human osteoclasts are still poorly understood. The Ca2+-sensitive fluorescent probe Fura2 was used to detect changes in the intracellular concentration of Ca2+ ([Ca2+]i) in a model of human osteoclasts. Stimulating these cells with receptor activator of NF-κB ligand (RANKL) induced a rapid and significant increase in [Ca2+]i. Adding extracellular Ca2+ chelators, depleting intracellular stores, and the use of a phospholipase C inhibitor all indicated that the Ca2+ was of extracellular origin, suggesting the involvement of a Ca2+ channel. We showed that none of the classical Ca2+ channels (L-, T-, or R-type) were involved in the RANKL-induced Ca2+ spike. However, the effect of high doses of Gd3+ did suggest that TRP family channels were present in human osteoclasts. The TRPV-5 channel was expressed in osteoclasts and was mainly located in the cellular area in contact with the bone surface. Furthermore, the RNA inactivation of TRPV-5 channel completely inhibited the RANKL-induced increase in [Ca2+]i, which was accompanied in the long term by marked activation of bone resorption. Overall, our results show that RANKL induced a significant increase in [Ca2+]i of extracellular origin, probably as a result of the opening of TRPV-5 calcium channels on the surface of human osteoclasts. Our findings suggest that TRPV-5 contributes to maintaining the homeostasis of the human skeleton via a negative feedback loop in RANKL-induced bone resorption.  相似文献   

6.
It has been well established that increases in extracellular calcium concentration ([Ca2+]) inhibit parathyroid hormone (PTH) secretion. The effects of [Ca2+] are mediated through a G-protein-coupled receptor that has been cloned and characterized. Additionally, it has been demonstrated in parathyroid cells that an increase in [Ca2+] results in an increase in steady-state levels of intracellular calcium ([Ca2+]i). At present, it has not been fully resolved whether changes in [Ca2+]i are related to changes in PTH secretion. In the current study, the effect of increased [Ca2+] on PTH secretion and the connection regarding changes in concentrations of intracellular calcium [Ca2+]i have been examined in primary cultures of bovine parathyroid cells. PTH secretion was measured by radioimmunoassay and intracellular calcium was determined by single cell calcium imaging. Bovine parathyroid cells pre-incubated with either 0.5 or 1 mM calcium responded to rapid increases in [Ca2+] (≥0.5 mM) with an immediate and sustained increase in steady-state levels of [Ca2+]i that persisted for time intervals greater than 15 minutes. Although the magnitude of the sustained increase in [Ca2+]i varied among individual cells (∼40% to >300%), the overall pattern and course of time were similar in all cells examined (n = 142). In all trials, [Ca2+]i immediately returned to baseline levels following the addition of the calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Additional control studies, however, suggest that sustained increases in [Ca2+]i do not correlate with regulation of parathyroid hormone secretion. Sustained elevations of [Ca2+]i were not observed when [Ca2+] was gradually increased by the addition of 0.1 mM increments at 1 minute intervals. Furthermore, the effect on inhibition of PTH secretion was the same regardless of whether [Ca2+] was increased by gradual or rapid addition.  相似文献   

7.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

8.
Migrating cells continually develop new substrate attachments at the leading edge (LE) in order to maintain traction for movement. This study evaluates the relationship between LE adhesion and wound closure by modulating injury-derived intracellular free Ca2+ [Ca2+]i) signaling in endothelial cell (EC) monolayers following scrape-wounding. These data show that brief treatment with increased extracellular Ca2+ ([Ca2+]e) during wounding accelerated wound area closure rates by 50–65%, while brief treatments with calcium influx inhibitors reduced rates by 30–50%. Fura-2 studies in wounded monolayers indicated supranormal [Ca2+]e during wounding increased (by 52%), while influx-inhibitors decreased (by 36%) the percentage of cells exhibiting elevated plateau [Ca2+]i levels. Quantitative time-lapse interference reflection microscopy (IRM) together with indirect αvβ3 integrin immunofluorescence was used to measure the effects of 100 μM Gd3+ and 5 mM [Ca2+]e treatment on fractional LE adhesion after wounding. Influx inhibition blocked development of increased injury-derived LE adhesion. Measurements indicated a linear relationship (r2 = 0.99, 0.98) between LE adhesion, development rates (quantified as an association rate constant) and steady state wound closure rates. Changes in filopodial activity, as indicated by phase contrast microscopy, did not correlate with changes in wound closure rates, but an association existed between the percentile peak [Ca2+]i response and the initiation of filopodial activity, suggesting a role for filopodia in mediating Ca2+-sensitive acceleration. Taken together, our data suggest that injury-derived [Ca2+]i signaling may regulate wound closure rates by an adhesion-mediated mechanism. J. Cell. Physiol. 174:217–231, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Summary The effect of taurine on the cellular distribution of [Ca2+]i, during the calcium paradox was examined by digital imaging of a single fura-2-loaded cell. Cardiomyocytes superfused with control medium containing 2mM Ca2+ exhibited typical transients associated with spontaneous beating. When the cells were exposed to Ca2+-free buffer, immediate cessation of both spontaneous contractions and calcium transients was observed as [Ca2+]; rapidly fell to a level of 3–6 × 10–8M. Subsequent restoration of medium calcium increased [Ca2+]i to level 4–7 times normal. Large increases in [Ca2+]i were observed in most cells and were associated with the development of contracture and bleb formation.Taurine pretreatment (20mM) caused no significant effect on [Ca2+]i during Ca2+ depletion. However, it inhibited excessive accumulation of [Ca2+]i during the Ca2+ repletion. Moreover, taurine treated cells recovered their Ca2+-transients and beating pattern earlier than non-treated cells. Finally morphological abnormalities commonly associated with calcium overload were attenuated by taurine treatment.  相似文献   

10.
Abstract: Glial cells in primary mixed cultures or purified astrocyte cultures from mouse cortex respond to reduced extracellular calcium concentration ([Ca2+]e) with increases in intracellular calcium concentration ([Ca2+]i) that include single-cell Ca2+ oscillations and propagated intercellular Ca2+ waves. The rate and pattern of propagation of low [Ca2+]e-induced intercellular Ca2+ waves are altered by rapid perfusion of the extracellular medium, suggesting the involvement of an extracellular messenger in Ca2+ wave propagation. The low [Ca2+]e-induced Ca2+ response is abolished by thapsigargin and by the phospholipase antagonist U73122. The low [Ca2+]e-induced response is also blocked by replacement of extracellular Ca2+ with Ba2+, Zn2+, or Ni2+, and by 100 µM La3+. Glial cells in lowered [Ca2+]e(0.1–0.5 mM) show an increased [Ca2+]i response to bath application of ATP, whereas glial cells in increased [Ca2+]e (10–15 mM) show a decreased [Ca2+]i response to ATP. These results show that glial cells possess a mechanism for coupling between [Ca2+]e and the release of Ca2+ from intracellular stores. This mechanism may be involved in glial responses to the extracellular environment and may be important in pathological conditions associated with low extracellular Ca2+ such as seizures or ischemia.  相似文献   

11.
Phosphoinositide (PI) and calcium metabolism were studied in guinea pig cerebral cortex synaptosomes. Mass amounts of inositol and inositol monophosphates, and the levels of free intrasynaptosomal calcium ([Ca2+]i) were measured after KCl (60 mM), after a direct cholinergic agonist carbachol (CA, 1mM), and after their combination. Inositol, inositol-1-phosphate (Ins1P), inositol-4-phosphate (Ins4P) and [Ca2+]i were measured with and without 10 mM LiCl in the incubation medium. CA-induced cholinergic stimulation elevated synaptosomal Ins4P levels by 40% but did not affect Ins1P or [Ca2+]i. On the contrary, KCl elevated Ins1P by 50% and [Ca2+]i by 40% above the resting level, and decreased inositol by 20%, whereas no alterations in Ins4P occurred. CA did not modify the response of KCl, but KCl abolished the elevation of Ins4P by CA. LiCl attenuated KCl-induced elevation of Ins1P but amplified the CA-induced elevation of Ins4P. The elevation of presynaptic [Ca2+]i was accompanied by accumulation of Ins1P but not that of Ins4P. Hence, the present results suggest that presynaptic cholinergic stimulation and KCl-induced depolarization may activate different degradation pathways of inositolphosphate metabolism.  相似文献   

12.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

13.
《Cell calcium》2015,58(5-6):366-375
In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca2+]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca2+]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48 h to a variety of stressors: cytokines (low-grade inflammation), 28 mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca2+]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca2+]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3–11 mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca2+]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11 mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3 mM glucose) observed for FFAs and also for 28G. We also clamped [Ca2+]i using 30 mM KCl + 250 μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3–11 mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca2+]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca2+]i but not conventional insulin secretion and ‘metabolic’ stressors (FFAs, 28G, rotenone) impacted insulin secretion.  相似文献   

14.
The intracellular concentration of calcium ([Ca2+]i) of rat submandibular ductal cells was measured with the intracellular fluorescent dye Fura-2. Carbachol (100 μM) and ATP (1 mM) both increased the [Ca2+]j. The late response to ATP was blocked by 0.5 mM Ni2+. This concentration of Ni2+ also blocked the increase of the [Ca2+]i and the uptake of manganese and calcium in response to 2′- and 3′-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP, 100 μM), a specific agonist of P2X receptors from salivary glands. The increase of the [Ca2+]i in response to 2-methylthioadenosine 5′-triphosphate (2-McSATP, 100 μM) a specific P2Y agonist in salivary glands or to a muscarinic agonist (carbachol) was not affected by 0.5 mM Ni2+. Only higher concentrations of Ni2+ (in the millimolar range) inhibited the uptake of extracellular calcium in response to carbachol. SK&F 96365, a blocker of store-operated calcium channels, inhibited the uptake of extracellular calcium in response to carbachol without affecting the response to BzATP. It is concluded that at low concentrations (below 0.5 mM), Ni2+ inhibits the non-specific cation channel coupled to P2X receptors. The uptake of extracellular calcium by store-operated calcium channels is inhibited by higher concentrations of Ni2+ and by SK&F96365.  相似文献   

15.
Osteoclasts are multinucleated, bone-resorbing cells that show structural and functional differences between the resorbing and nonresorbing (motile) states during the bone resorption cycle. In the present study, we measured intracellular Ca2+ concentration ([Ca2+]i) in nonresorbing vs. resorbing rat osteoclasts. Basal [Ca2+]i in osteoclasts possessing pseudopodia (nonresorbing/motile state) was around 110 nM and significantly higher than that in actin ring-forming osteoclasts (resorbing state, around 50 nM). In nonresorbing/motile osteoclasts, exposure to high K+ reduced [Ca2+]i, whereas high K+ increased [Ca2+]i in resorbing state osteoclasts. In nonresorbing/motile cells, membrane depolarization and hyperpolarization applied by the patch-clamp technique decreased and increased [Ca2+]i, respectively. Removal of extracellular Ca2+ or application of 300 µM La3+ reduced [Ca2+]i to 50 nM in nonresorbing/motile osteoclasts, and high-K+-induced reduction of [Ca2+]i could not be observed under these conditions. Neither inhibition of intracellular Ca2+ stores or plasma membrane Ca2+ pumps nor blocking of L- and N-type Ca2+ channels significantly reduced [Ca2+]i. Exposure to high K+ inhibited the motility of nonresorbing osteoclasts and reduced the number of actin rings and pit formation in resorbing osteoclasts. These results indicate that in nonresorbing/motile osteoclasts, a La3+-sensitive Ca2+ entry pathway is continuously active under resting conditions, keeping [Ca2+]i high. Changes in membrane potential regulate osteoclastic motility by controlling the net amount of Ca2+ entry in a "reversed" voltage-dependent manner, i.e., depolarization decreases and hyperpolarization increases [Ca2+]i. membrane depolarization; resorbing and motile activities; bone resorbing cycle  相似文献   

16.
The possible role of metalloendoproteinase in stimulus-secretion coupling in adrenal chromaffin cells was examined using the metalloendoproteinase inhibitors 1,10-phenanthroline and carbobenzoxy-Gly-Phe-NH2. Catecholamine release elicited by nicotine or by depolarisation with 55 mM K+ was almost completely abolished by 0.5 mM 1,10-phenanthroline. Carbobenzoxy-Gly-Phe-NH2 (2.5 mM) inhibited catecholamine release in response to nicotine but enhanced that due to 55 mM K+. The rise in intracellular free calcium, [Ca2+]i, in response to either nicotine or 55 mM was inhibited by about 50% by both inhibitors. One site of action of metalloendoproteinase inhibitors may, therefore, be at the level of the regulation of [Ca2+]i. Catecholamine release and the rise in [Ca2+]i elicited by the calcium ionophore ionomycin were not reduced by the inhibitors. These results show that metalloendoproteinase inhibitors have complex effects on chromaffin cells including effects on the regulation of [Ca2+]i but do not inhibit calcium-activated exocytosis itself.  相似文献   

17.
The influence of lactobacilli and new probiotic product on mitochondrial energetics of rat heart mitochondria and on dynamics of intracellular calcium concentration ([Ca2+]i) of cardiomyocytes and rat aortic smooth muscle cells was investigated. Respiration of mitochondra was estimated polarographically. [Ca2+]i was measured using fluorescent calcium indicator Fura 2 AM and calcium imaging system. The application of lactobacilli (5 × 107 CFU/mL) was shown to increase [Ca2+]i in cardiomyocytes, thereby increasing myocardial contractility. On the other hand, application of lactobacilli reduced thapsigargin-induced calcium influx in smooth rat aortic muscle, thus exhibiting some hypotensive effect. It was shown that probiotic product stimulated mitochondria respiration and exerted a mild uncoupling effect on electronic transport and oxidative phosphorylation in mitochondria. In cardiomyocytes and in smooth muscles probiotic product increased [Ca2+]i and consequent increase in contractility of blood vessels and myocardium. It is supposed that the probiotic product can be effectively applied at the endotoxic shock, when contractility of blood vessels in response to vasoconstrictor agents is suppressed.  相似文献   

18.
The calcium-sensitive fluorescent indicator fura-2 and a microscope equipped for rapidly changing excitation wavelengths were used to look at the effects of growth factors on cytosolic free calcium ([Ca2+]i,) in NRK-49F cells. In these cells bradykinin induced a rapid increase in [Ca2+]i, which generally decayed to near basal [Ca2+]i within 3 minutes. The initial rise in [Ca2+]i in response to bradykinin was relatively independent of extracellular calcium; however, the decay to basal [Ca2+]i was more rapid in the absence of extracellular calcium. Measurements made on individual cells showed a heterogeneity in the response to bradykinin. Epidermal growth factor (EGF) had no effect on [Ca2+]i in NRK-49F cells when added alone in the presence of extracellular calcium. Simultaneous addition of bradykinin and EGF produced a more prolonged increase in [Ca2+]i than bradykinin alone. The prolongation was dependent on the presence of extracellular calcium and did not occur in its absence. Transient increases in [Ca2+]i occurring after the initial peak were occasionally seen in these cells. Our results indicate that there is rapid interaction between the signaling mechanisms for bradykinin and EGF. When this occurs, one effect is the transport of calcium into the cell from the extracellular environment, causing a more prolonged rise in [Ca2+]i. This effect occurs within 1 minute after combined addition of bradykinin and EGF.  相似文献   

19.
《Life sciences》1997,61(16):PL227-PL234
Calcium ions have been implicated in the mechanisms of ventricular arrhythmias. Impairment of intercellular coupling by calcium overload is considered to facilitate ventricular fibrillation (VF) and to sup-press its self termination. According to our hypothesis, any compound that decreases intracellular calcium concentration [Ca2+]i during VF can serve as defibrillating drug. In this study, we examined the effect of d-sotalol and tedisamil on calcium overload in cultured, spontaneously beating rat cardiomyocytes. The changes of [Ca2+]i were measured by indo-1 method and the intercellular synchronization by image analysis. The results showed that increase in [Ca2+]o from 1.9 mM to 3.9 mM increased [Ca2+]i from 100 nM to 320 nM and transformed the synchronized cell movement to an asynchronous one. Administration of 5 × 10−6 M d-sotalol or 10−6 M tedisamil, decreased the [Ca2+]i to its basic level and restored the synchronized activity. In summary: Our results showed that increase in [Ca2+]i known to caused inhibition of intercellular coupling, that could lead to arrhythmia and fibrillation while d-sotalol or tedisamil prevented this effect. These results support our hypothesis, that class III antiarrhythmic compounds with positive inotropic effect, increase intercellular synchronization, by decreasing free [Ca2+]i, most probably by increasing the Ca2+ uptake by the sarcoplasmic reticulum, and therefore act as a defibrillating compound.  相似文献   

20.
The effect of extracellular calcium ([Ca2+] e ) on cytosolic calcium ([Ca2+] i ) was investigated in thick ascending limbs and collecting ducts from the rat kidney, using the fluorescent dye fura-2. In cortical collecting ducts, basolateral but not apical changes in [Ca2+] e were associated with parallel changes in [Ca2+] i . Basal [Ca2+] i was hardly modified by nifedipine and verapamil but was decreased by 60% by basolateral La3+. Increasing peritubular [Ca2+] e triggered Ca2+ release from intracellular stores. This effect was not reproduced by agonists of the renal Ca2+-receptor RaKCaR, e.g., Ba2+, Mg2+, Gd3+, and neomycin, but was reproduced by Ni2+. Ni2+-induced mobilization of intracellular Ca2+ was larger in the inner medullary collecting duct, a segment which poorly responds to increasing [Ca2+] e . In the cortical thick ascending limb, removing basolateral Ca2+ hardly altered [Ca2+] i but increasing [Ca2+] e or adding Ba2+, Mg2+, Gd3+ and neomycin released intracellular calcium. These data demonstrate that (1) basolateral influx of calcium occurs in cortical collecting ducts, under basal conditions; (2) this influx occurs through nonvoltage gated channels, permeable to Ba2+, insensitive to verapamil and nifedipine, and blocked by La3+; (3) increasing [Ca2+] e stimulates the influx and triggers intracellular calcium release, independently of the phospholipase C-coupled receptor RaKCaR; (4) RaKCaR is functionally expressed in thick ascending limbs; (5) another membrane receptor, sensitive to Ni2+ but not to Ca2+ is present in the collecting duct. Received: 12 July 1996/Revised: 28 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号