首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

2.
Nonspiking interneurons were investigated in a tethered, walking insect, Carausius morosus, that was able to freely perform walking movements. Experiments were carried out with animals walking on a lightweight, double-wheel treadmill. Although the animal was opened dorsally, the walking system was left intact. Intracellular recordings were obtained from the dorsal posterior neuropil of the mesothoracic ganglion. Nonspiking inter-neurons, in which modulations of the membrane potential were correlated with the walking rhythm, were described physiologically and stained with Lucifer Yellow. Interneurons are demonstrated in which membrane potential oscillations mirror the leg position or show correlation with the motoneuronal activity of the protractor and retractor coxae muscles during walking. Other interneurons showed distinct hyperpolarizations at certain important trigger points in the step cycle, for example, at the extreme posterior position. Through electrical stimulation of single, nonspiking interneurons during walking, the motoneuronal activity in two antagonistic muscles—protractor and retractor coxae—could be reversed and even the movement of the ipsilateral leg could be influenced. The nonspiking interneurons described appear to be important premotor elements involved in walking. They receive, integrate, and process information from different leg proprioceptors and drive groups of leg motoneurons during walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号